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Introduction. Every student of mechanics encounters discussion of the idealized
one-dimensional dynamical systems

F (x) = mẍ with F (x) =

{ 0 : free particle
−mg : particle in free fall
−kx : harmonic oscillator

at a very early point in his/her education, and with the first & last of those
systems we are never done: they are—for reasons having little to do with
their physical importance—workhorses of theoretical mechanics, traditionally
employed to illustrated formal developments as they emerge, one after another.
But—unaccountably—the motion of particles in uniform gravitational fields1 is
seldom treated by methods more advanced than those accessible to beginning
students.

It is true that terrestrial gravitational forces are so relatively weak that
they can—or could until recently—usually be dismissed as irrelevant to the
phenomenology studied by physicists in their laboratories.2 But the free fall

1 It is to avoid that cumbersome phrase that I adopt the “free fall” locution,
though technically free fall presumes neither uniformity nor constancy of the
ambient gravitational field . If understood in the latter sense, “free fall” lies near
the motivating heart of general relativity, which is certainly not a neglected
subject.

2 There are exceptions: I am thinking of experiments done several decades
ago where neutron diffraction in crystals was found to be sensitive to the value
of g. And of experiments designed to determine whether antiparticles “fall up”
(they don’t).
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problem—especially if construed quantum mechanically, with an eye to the
relation between the quantum physics and classical physics—is itself a kind of
laboratory, one in which striking clarity can be brought to a remarkable variety
of formal issues. It is those points of general principle that interest me, but
some of the technical details (especially those that hinge on properties of the
Airy function Ai(z)) are so lovely as to comprise their own reward.

I approach the classical theory of free fall with an eye to the formal needs of
the quantum theory, and consider the entire discussion to be merely preparatory
to the discussions of the classical/quantum dynamics of a bouncing ball and of
some related instances of obstructed free fall that will be presented in a series
of companion essays.

classical dynamics of free fall

1. What Galileo & Newton have to say about the problem. We will work in one
dimension and (because I want to hold both y and z in reserve) consider the
Cartesian x-axis to run “up.” The free fall problem arises from

F (x) = mẍ

when F (x) is in fact an x-independent constant , the “weight” of the lofted
particle . . . and with that we confront already a conceptual issue, wrapped in
an anachronism:

To describe “weight” we might, in general, write

WWW = mgggg

where mg refers to the gravitational mass of the particle, and ggg to the strength
of the ambient gravitational field. It becomes therefore possible for Newton
(but would have been anachronistic for Galileo) to contemplate equations of
motion of the form

mgggg = mẍxx

But Galileo’s Leaning Tower Experiment supplies mg = m (universally). It is
on this basis that we drop the g: mgggg = mẍxx becomes mggg = mẍxx becomes ggg = ẍxx ,
which in the 1-dimensional case, if ggg is a down-directed vector of magnitude g,
becomes

ẍ + g = 0 (1)

We will have quantum mechanical occasion to revisit this topic.

2. Free fall trajectories in spacetime. The general solution of (1) can be described

x(t) = a + bt− 1
2gt

2 (2)

where a and b are arbitrary constants (constants of integration). Standardly
we associate a and b with initial data

a ≡ x(0) ≡ x0 : b ≡ ẋ(0) ≡ v0
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but other interpretations are sometimes more useful: from stipulated endpoint
conditions

x0 = a + bt0 − 1
2gt

2
0

x1 = a + bt1 − 1
2gt

2
1

we compute (it’s easy by hand if we compute b first, but ask Mathematica)

a =
x0t1 − x1t0

t1 − t0
− 1

2gt0t1

b =
x1 − x0

t1 − t0
+ 1

2g(t0 + t1)


 (3)

giving

x(t;x1, t1;x0, t0) =
{x0t1 − x1t0

t1 − t0
− 1

2gt0t1

}
+

{x1 − x0

t1 − t0
+ 1

2g(t0 + t1)
}
t− 1

2gt
2 (4)

which checks out: x(t0;x1, t1;x0, t0) = x0, x(t1;x1, t1;x0, t0) = x1.

3. Translational equivalence in spacetime. Spacetime translation of what we
will agree to call the “primitive solution”

x = − 1
2gt

2 (5.1)

gives
(x− x0) = − 1

2g(t− t0)2 (5.2)

or
x = (x0 − 1

2g t
2
0) + (gt0)t− 1

2g t
2

To say the same thing another way: if into (2) we introduce the notation

b = gt0

a = x0 − 1
2g b

2 = x0 − 1
2gt

2
0

}
(6)

then we achieve (5.2). In short: every solution is translationally equivalent to
the primitive solution. In this regard the free fall problem is distinguished from
both the free particle problem

General solution of ẍ = 0 reads x(t) = a + bt. Take x(t) = Bt to
be the primitive solution (B a prescribed constant “velocity”). To
bring a + bt to the form Bt one must
• translate in space and
• rescale the time coordinate
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and the harmonic oscillator

General solution of ẍ = −ω2x reads x(t) = a cosωt + (b/ω) sinωt.
Take x(t) = (B/ω) sinωt to be the primitive solution (here B is
again a prescribed constant “velocity”: we have arranged to recover
our free particle conventions in the limit ω ↓ 0 ). To bring the
general solution to primitive form one must
• translate in time and
• rescale the space coordinate

remark: Some figures here would make everything clear. Figure 1 captures
the situation as it relates specifically to the free fall problem.

The preceding observations motivate the following

conjecture: If x(t) = x0 +f(t− t0) describes the general
solution of a differential equation of the form ẍ = F (x) then
necessarily F (x) = constant.

—the proof of which is, in fact, easy. The conjecture identifies a seldom-
remarked uniqueness property of the free fall problem, the effects of which will
haunt this work.

Figure 1: Shown in red is a graph of the “primitive” free fall
solution (5.1). Other solutions of ẍ + g = 0 are seen to have the
same shape; i.e., to be translationally equivalent.

4. Lagrangian, Hamiltonian and 2-point action. If, as is most natural, we take
the free fall Lagrangian to be given by

L(ẋ, x) ≡ 1
2mẋ2−U(x) (7.1)

U(x) = mgx (7.2)

then
p ≡ ∂L/∂ẋ = mẋ
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and the Hamiltonian becomes

H(p, x) = pẋ− L(ẋ, x) = 1
2mp2 + mgx (8)

The action associated with any test path x(t) is given by

S[x(t)] ≡
∫ t1

t0

L
(
ẋ(t), x(t)

)
dt

Take x(t) to be in fact a solution of the equation of motion. Take it, more
particularly, to be the solution described at (2). Then

S[a + bt− 1
2gt

2] =
∫ t1

t0

L(b− gt, a + bt− 1
2gt

2) dt

= m
{

( 1
2b

2 − ag)(t1 − t0) − bg(t21 − t20) + 1
3g

2(t31 − t30)
}

Take a and b to be given by (3). Then Mathematica supplies3

S(x1, t1;x0, t0) = 1
2m

{
(x1 − x0)2

t1 − t0
− g(x0 + x1)(t1 − t0)− 1

12g
2(t1 − t0)3

}
(9)

This is the action functional associated with (not must some arbitrary “test
path” linking (x0, t0) −→ (x1, t1) but with) the dynamical path linking those
spacetime points: it is not a functional but a function of the parameters
(x1, t1;x0, t0) that serve by (4) to define the path, and is, for reasons now
obvious, called the “2-point action function.”

It becomes notationally sometimes convenient to drop the 1’s from x1 and
t1, and to write S(x, t;x0, t0). We observe that the free fall action function (9)
gives back the more frequently encountered free particle action

↓
= 1

2m
(x1 − x0)2

t1 − t0
when the gravitational field is turned off: g ↓ 0

5. Energy & momentum. The total energy of our freely falling particle is given
by

E(t) = 1
2mẋ2(t) + mgx(t)

= 1
2mp2(t) + mgx(t)

= instantaneous numerical value of the Hamiltonian

(10)

Taking x(t) to be given by (2) we compute

E(t) = 1
2m(b2 + 2ga) = constant (11)

3 For the first occurance of this result in my own writing, see quantum
mechanics (), Chapter 1, page 21. But beware: one must reverse the sign
of g to achieve agreement with results quoted there.
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Energy conservation is no surprise: it follows directly from the t-independence
of the Hamiltonian (which is to say: from the t-independence of the potential).

Working from (2) we find that the momentum

p(t) = m(b− gt) (12)

which follows also from

p(t) =
√

2m[E −mgx(t)]

=
√

m2(b2 + 2ga) − 2m2g(a + bt− 1
2gt

2)

=
√

m2(b2 − 2gbt + g2t2)

=
√

m2(b− gt)2

Working from (4)—or (more simply) by drawing upon (3)—we obtain

p(t) = m
{x1 − x0

t1 − t0
+ 1

2g(t0 − 2t + t1)
}

(13)

which means that a particle that moves along the trajectory (x0, t0) −→ (x1, t1)
must be launched with momentum

p(t0) = m
{x1 − x0

t1 − t0
+ 1

2g (t1 − t0)
}

and arrives with momentum

p(t1) = m
{x1 − x0

t1 − t0
− 1

2g (t1 − t0)
}

General theory asserts, and computation confirms, that these equations could
also have been obtained from

p(t1) = +
∂S(x1, t1;x0, t0)

∂x1

p(t0) = −∂S(x1, t1;x0, t0)
∂x0


 (14)

Notice that

∆p ≡ p(t1) − p(t0) = −mg (t1 − t0) =
∫ t1

t0

(−mg) dt = impulse

and that, according to (13), p(t) interpolates linearly between its initial and
final values.

6. Noether’s theorem. It is to a mathematician (Emmy Noether, ) that
physicists owe recognition of an illuminating connection between
• an important class of conservation laws and
• certain invariance properties (“symmetries”) of the dynamical action.

We look here only to some particular instances of that connection, as they relate
specifically to the free fall problem.
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We saw in §3 that time translation generally, and infinitesimal time
translation (x, t) �−→ (x, t + δt) more particularly,4 maps solutions to other
solutions of the free fall equations:

(x− x0) + 1
2g(t− t0)2 = 0 �−→ (x− x0) + 1

2g(t− (t0 − δt))2 = 0

Figure 2: Graphs of a free fall and of its temporal translate. If the
initial motion is identified by specification of its endpoints then to
identify its translate one must modify both endpoints:

(x1, t1;x0, t0) �−→ (x1, t1 + δt;x0, t0 + δt)

Noether argues5 that

δS = S(x1, t1 + δt;x0, t0 + δt) − S(x1, t1;x0, t0)

= J(ẋ, x)
∣∣∣t1
t0

· δt with J(ẋ, x) ≡ −
[
p(ẋ, x)ẋ− L(ẋ, x)

]
But it is a manifest implication of (9) that

δS = 0 : the dynamnical action is t-translation invariant

and from this it follows that[
p(ẋ, x)ẋ− L(ẋ, x)

]
t1

=
[
p(ẋ, x)ẋ− L(ẋ, x)

]
t0

which asserts simply that energy is conserved .

4 Noether worked within the framework provided by the calculus of
variations, so found it natural to assign special importance to infinitesimal
transformations.

5 See classical mechanics (), page 163.
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Similarly . . .we saw in §3 that space translation generally, and infinitesimal
space translation (x, t) �−→ (x+δx, t) more particularly, maps solutions to other
solutions of the free fall equations:

(x− x0) + 1
2g(t− t0)2 = 0 �−→ (x− (x0 − δx)) + 1

2g(t− t0)2 = 0

Figure 3: Graphs of a free fall and of its spatial translate. Again,
if we adopt endpoint specification then we must write

(x1, t1;x0, t0) �−→ (x1 + δx, t1;x0 + δx, t0)

Noether’s argument in this instance supplies

δS = S(x1, t1 + δt;x0, t0 + δt) − S(x1, t1;x0, t0)

= J(ẋ, x)
∣∣∣t1
t0

· δt where now J(ẋ, x) ≡ p(ẋ, x)

But it is a manifest implication of (9) that—owing to the presence of the
(x0 + x1)-term (which vanishes in the free particle limit g ↓ 0)—

δS 	= 0 : the dynamnical action is not x-translation invariant

and from this it follows that[
p(ẋ, x)

]
t1

	=
[
p(ẋ, x)

]
t0

: momentum is not conserved

Evidently it is not the “symmetry of the space of motions” that matters: it is
symmetry of the dynamical action that gives rise to conservation laws.

7. 2-point Hamilton-Jacobi equations. Classical mechanics, pursued to its
depths, supplies the information that the dynamical action function satisfies a
pair of (generally non-linear) partial differential equations—namely, the
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Hamilton-Jacobi equation

H
(∂S(x1,t1;•,•)

∂x1
, x1

)
+ ∂S(x1,t1;•,•)

∂t1
= 0

and its time-reversed companion

H
(∂S(•,•;x0,t0)

∂x0
, x0

)
− ∂S(•,•;x0,t0)

∂t0
= 0

In the present context those equations read

1
2m

(∂S(x1,t1;•,•)
∂x1

)2 + mgx1 + ∂S(x1,t1;•,•)
∂t1

= 0 (15.1)
1

2m

(∂S(•,•;x0,t0)
∂x0

)2 + mgx0 − ∂S(•,•;x0,t0)
∂t0

= 0 (15.2)

and Mathematica confirms that the S(x1, t1;x0, t0) of (9) does in fact satisfy
those equations.

There are, of course, infinitely many other bi-functions F (x1, t1;x0, t0)
that satisfy the H-J system (15). We have yet to describe the sense in which S
occupies a distinguished place within that population.

8. Separated solutions of the 1-point Hamilton-Jacobi equation. In some
respects deeper, and in all respects simpler and more transparent . . . than the
theory of 2-point H-J functions is the theory of 1-point H-J functions, central
to which is the (solitary) Hamilton-Jacobi equation

H
(∂S(x,t)

∂x , x
)

+ ∂S(x,t)
∂x = 0 (16)

As—briefly—to the meaning of that equation: given a function S(x) ≡ S(x, 0)
the fundamental relation

p(x) = ∂S(x,0)
∂x (17)

serves to describe a curve C0 on phase space (i.e., on (x, p)-space). The H-J
equation (16) describes the dynamical motion of that curve:

C0 −−−−−−−−−−−−−−−−−−−−−−−−−→
Hamiltonian-induced phase flow

Ct (18)

We will have occasion later to describe concrete instances of (18).

In the case of interest (16) reads

1
2m

(∂S(x,t)
∂x

)2 + mgx + ∂S(x,t)
∂t = 0 (19)

What happens if we attempt to solve that non-linear partial differential equation
by separation of variables? Write

S(x, t) = W (x) + F (t)

and obtain
1

2m

(∂W (x)
∂x

)2 + mgx = −∂F (t)
∂t

whence
1

2m

(dW (x)
dx

)2 + mgx = +E

dF (t)
dt = −E

}
: E is a separation constant
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Immediately
F (t) = F0 − Et

W (x) =
∫ x√

2m[E −mgξ] dξ

= 2
3mg

√
2m[E −mgx]3 + W0

which supply this E -parameterized family of particular H-J functions

S(x, t;E) = 2
3mg

√
2m[E −mgx]3 − Et + S0 (20)

Here we have lumped the additive constants: S0 ≡ W0 + F0.6

We will revisit this topic after we have acquired quantum mechanical reason
to do so: for the moment I must be content mere to set the stage. We are in
the habit of thinking that solutions obtained by separation can be combined to
produce the general solution of a partial differential equation. How is that to
be accomplished in the present instance? Quantum theory will motivate us to
ask this sharper question: How can the H-J functions S(x, t;E) be combined
to produce the S(x1, t1;x0, t0) of (9)?7

9. Hamiltonian methods. The free fall Hamiltonian

H(p, x) = 1
2mp2 + mgx

supplies canonical equations

ẋ = +∂H/∂p = 1
mp

ṗ = −∂H/∂x = −mg

}
(21)

which are transparently equivalent to (1). The motion of an arbitrary observable
A(p, x, t) is therefore given by

Ȧ = ∂A
∂x

∂H
∂p

− ∂A
∂p

∂H
∂x

+ ∂A
∂t

≡ [A,H ] + ∂A
∂t

= 1
mpAx −mgAp + At (22)

Energy conservation is, from this point of view, immediate

Ḣ = [H,H ] = 0

and so is momentum non-conservation:

ṗ = [ p,H ] = [ p,mgx] = −mg 	= 0

6 Because it is always useful to inquire “What happens in the free particle
limit to the gravitational result in hand?” we expand in powers of g and obtain
the curious result

S =
{
S0 − 4

3
E2

P g−1
}

+
{
Px− Et

}
− 1

2
m2x2

P g + · · ·

where P ≡
√

2mE.
7 General theory relating to those questions is developed in Appendix B:

“Legendre transformation to/from the ‘energy representation’ and its Fourier-
analytic quantum analog” to the class notes cited in footnote 5.
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Phase flow carries

(x, p)0 −−−−−−−−−→
phase flow

(x, p)t = (x0 + 1
mp0t− 1

2gt
2, p0 −mgt) (23)

Necessarily (x, p)0 and (x, p)t lie on the same isoenergetic curve, and those
E -parameterized curves

1
2mp2 + mgx = E

are parabolic, oriented as shown in the following figure:

Figure 4: Effect of phase flow on a representative population of
phase points, computed on the basis of (23). The x-axis runs →,
the p-axis runs ↑. I have set m = g = 1 and assigned to the
phase points the initial coordinates (0, 0.4), (0, 0.6), (0, 0.8), (0, 1.0),
(0, 1.2) and (0, 1.4). The coaxial parabolas all have the same shape,
and are conveniently distinguished/identified by their x-intercepts:
xE = E/mg.

We now adjust our viewpoint, agreeing to look upon . . .

10. Gravitation as an artifact of non-inertiality. The root idea is that when we
encounter an equation of motion of the form

FFF + mGGG = mẍxx

we should think of the mGGG -term not as a “force that happens to adjust its
strength in proportion to the mass of the particle upon which it acts” (shades
of Galileo!)—indeed, not as a “force” at all—but as an “acceleration term” that
has slipped to the wrong side of the equality: that we should instead write

FFF = m(ẍxx−GGG)

and interpret the non-Newtonian structure of the expression on the right to
signal that xxx must refer to a non-inertial coordinate system. To adopt such
a view8 is to dismiss gravitation as a “fictitious force,” akin to the centrifugal

8 Hard to do if, as I have, you’ve every been hospitalized by a fall, though
we speak here of nothing less than Einstein’s lofty Equivalence Principle.
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and Coriolis “forces.” The idea can be implemented, in a degree of generality
sufficient for the purposes at hand,9 as follows:

Let x and x, which refer to Cartesian coordinatizations of 1-space, stand
in the simple relation

x = x + a(t) (24)

Evidently a(t) describes the instantaneous location, relative to the X-frame, of
the X-origin (conversely, −a(t) describes the instantaneous location, relative to
the X-frame, of the X-origin):

x(0, t) = +a(t)
x(0, t) = −a(t)

Assume X to be inertial: assume, in other words, that the force-free motion of
a mass m relative to X can be described

mẍ = 0 (25.1)

In x-coordinates that statement becomes

m(ẍ + ä) = 0 (25.2)

To recover (1) we have only to set a(t) = 1
2g t

2. (We might, more generally, set
a(t) = a0 + a1t + 1

2g t
2 but in the interest of simplicity I won’t.) Then

x = x + 1
2g t

2

x = x− 1
2g t

2

Motion which is seen to be free with respect to X is seen as free fall to the left
when referred to the X-frame which X sees to be accelerating to the right.

Turning now from the kinematic to the Lagrangian dynamical aspects of
the problem, and taking

L(ẋ, x) = 1
2mẋ2 : free particle lagrangian

as an obvious point of departure, we construct

L(ẋ, x, t) ≡ L(ẋ + g t, x + 1
2g t

2) = 1
2m(ẋ + g t)2

which (gratifyingly, but not at all to our surprise) gives back (1):

d
dtm(ẋ + g t) = m(ẍ + g) = 0

The Lagrangian L(ẋ, x, t) does not much resemble the Lagrangian encountered
at (7), but in fact they differ only by a gauge term:[

1
2m(ẋ + g t)2

]
=

[
1
2mẋ2 −mgx

]
+ d

dt

(
mgxt + 1

6mg2 t3
)

9 For a fairly detailed general account of the theory of fictitious forces see
pages 101–110 in the class notes cited several times previously.5
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Our program—the objective of which is to recover all the unfamiliar details
of free fall physics from the simpler details of free particle physics—proceeds
from the elementary device of stepping from an inertial frame to a uniformly
accelerated frame, but is seen now to involve rather more than a simple change
of coordinates x −→ x = x− 1

2g t
2: it is a 2-step process

x −→ x = x− 1
2g t

2

L −→ L = L + d
dtΛ

}
(26)

involving a coordinate transformation and a synchronized gauge transformation.
We must attend carefully to conceptual/notational distinctions at risk of
becoming confused (or—which is almost as bad—confusing). I spell out the
detailed meaning and some of the immediate implications of the second of the
preceding statements:

L(ẋ) ≡ 1
2mẋ2

↓
L(ẋ, x) ≡ 1

2mẋ2 −mgx

= L(ẋ + g t) + d
dtΛ(x, t)

Λ(x, t) ≡ −mgxt− 1
6mg2t3 (27)

= 1
2m(ẋ + g t)2 −mg

[
ẋt + x + 1

2gt
2
]

Collaterally

p ≡ ∂L/∂ẋ = mẋ

↓
p ≡ ∂L/∂ẋ = mẋ

= (∂L/∂ẋ) (∂ẋ/∂ẋ)︸ ︷︷ ︸ +(∂Λ/∂x)

= (∂x/∂x) = 1
= p−mgt

Look now to the transformation of the Hamiltonian. Generally, the fact
that the Lagrangian responds as a scalar to coordinate transformations implies
that the Hamiltonian does too: that would give

H(p, x) ≡ pẋ− L = 1
2mp2

↓
H(p, x) ≡ pẋ− 1

2m(ẋ + g t)2
∣∣∣
ẋ → (p−mgt)/m

= 1
2mp2 − g tp (28.1)

= 1
2m (p−mgt)2 − 1

2mg2t2
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But gauge adjustment of the Lagrangian is found10 to alter the definition of p
(specifically, p = m(ẋ+ g t) becomes p = m(ẋ+ g t) + ∂Λ/∂x = mẋ, which is to
say: pold −mgt = pnew) and to cause the Hamiltonian to pick up a subtractive
t -partial of the gauge function. The net effect can in the present instance be
described

↓
= 1

2mp2 − 1
2mg2t2 − ∂

∂t

[
−mgxt− 1

6mg2t3
]

= 1
2mp2 + mgx (28.2)

We will soon be motivated to look more closely to the line of argument just
sketched.

11. Contact with the theory of canonical transformations. It is important to
bear in mind that the question “To gauge or not to gauge?” is physically
inconsequential: it is resolved by whim of the physicist, in response to formal
(or perhaps merely æsthetic) considerations. In the following discussion I pursue
both options. Later it will emerge that one is more readily adapted to quantum
mechanics than the other.

ungauged formalism Underlying all is the ungauged statement

L(ẋ, x, t) ≡ L(ẋ + g t, x + 1
2g t

2) = 1
2m(ẋ + g t)2

from which follow p = m(ẋ + g t) = mẋ = p and the Hamiltonian (28.1). From

x −→ x = x− 1
2g t

2

p −→ p = p

}
(29)

(where the first line describes a t -dependent “point transformation” and the two
lines taken together describe the induced “extended point transformation”) it
follows trivially that

[x, p ] ≡ ∂x

∂x

∂p

∂p
− ∂p

∂x

∂x

∂p
= 1

which is to say: the transformation (29) is canonical . At any given t the
equations (29) describe a rigid translation of the phase plane—a translation
that, as it happens, leaves invariant the population of phase curves shown in
Figure 4.

Classical mechanics supplies two distinct techniques for “generating”
canonical transformations—one associated with the name of Legendre, the other
with that of Lie. We look first to the former:11

Legendre recognizes generators of four standard types

F1(x, x), F2(p, x), F3(x, p), F4(p, p)

10 See page 198 in classical mechanics ().
11 See pages 224–234 in classical mechanics ().
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—each of which is a function of “half the old phase coordinates (x, p) and half
the new (x, p).” A moment’s tinkering leads us to the Type 2 generator

F2(p, x) ≡ (x− 1
2g t

2)p (30)

from which we recover (29) by writing

p = ∂F2/∂x = p

x = ∂F2/∂p = x− 1
2g t

2

}
(31)

Notice that in the limit g ↓ 0 we are left with a well-known “generator of the
identity”: F2(p, x) = xp. Notice also that if we write

H(p, x) = 1
2mp2 and H(p, x) = 1

2mp2 − g tp

then12 = H
(
p(p, x), x(p, x)

)
+ ∂F2/∂t (32)

The “extra term” ∂F2/∂t = −g tp is brought into play by the circumstance that
the transformation (29) is t -dependent: only when such terms are absent can
one say that the Hamiltonian transforms as a scalar.

Lie would have us undertake to achieve (29) not “all at once” (as Legendre
did) but incrementally, by iteration of infinitesimal canonical transformations.
His idea can be implemented as follows: in place of (29) write

x(u) = x− 1
2g t

2u

p(u) = p

}
(33)

Here u is a dimensionless parameter that in effect “tunes the strength” of the
gravitational field and enables us to smoothly interpolate between free particle
physics and free fall physics: more particularly

x(0) = x

p(0) = p
and

x(1) = x

p(1) = p

It follows from (33) that
d
dux(u) = − 1

2g t
2

d
dup(u) = 0

These equations can be made to assume the design of Hamilton’s canonical
equations of motion

d
dux(u) = + ∂

∂p G(p, x) = −[G, x]
d
dup(u) = − ∂

∂xG(p, x) = −[G, p ]

}
(34)

12 See pages 234–239 in classical mechanics ().
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provided we set
G(p, x) = − 1

2g t
2p (35)

Formal iteration leads to this description of the solution of (34):

x(u) = x− u[G, x] + 1
2!u

2[G, [G, x]] − 1
3!u

3[G, [G, [G, x]]] + · · ·
= x− u 1

2g t
2

p(u) = p− u[G, p ] + 1
2!u

2[G, [G, p ]] − 1
3!u

3[G, [G, [G, p ]]] + · · ·
= p

from which we recover (29) at u = 1. It is the fact that x and p enter linearly
into the design of G(p, x) that accounts for the exceptional simplicity of these
results (i.e., for the disappearance of terms of O(u2)).

Notice that if H(p, x) = 1
2mp2 then

H − u[G,H ] + 1
2!u

2[G, [G,H ]] − 1
3!u

3[G, [G, [G,H ]]] + · · · = H

which is to say: Lie’s iterative process does not in this instance lead to the
correct transformed Hamiltonian. It leads to H(p, x) = 1

2mp2, to which one
must “by hand” add the “extra term” ∂F2/∂t = −g tp.

Hamilton-Jacobi theory (see again §7) serves to describe the relation
between the Lie and Legendre generators of any given canonical transformation.
Looking now to the particulars of the case at hand . . . the transformation (29)
can be recovered from the following (u− u)-parameterized family of Legendre
generators:13

F (p, u;x, u) ≡ [x− 1
2g(u− u)t2 ]p (36)

We compute
G

(
p, ∂F (p,u;x,u)

∂p

)
= − 1

2g t
2p

∂F (p,u;x,u)
∂u = − 1

2g t
2p

G
(∂F (p,u;x,u)

∂x , x
)

= − 1
2g t

2p

∂F (p,u;x,u)
∂u = + 1

2g t
2p

from which follow this pair of “2-point Hamilton-Jacobi equations:”

G
(
p, ∂F (p,u;x,u)

∂p

)
− ∂F (p,u;x,u)

∂u = 0

G
(∂F (p,u;x,u)

∂x , x
)

+ ∂F (p,u;x,u)
∂u = 0

}
(37)

The signs are a bit funny because F is a Type 2 generator, while the S of §7 is
a generator of Type 1.

13 Here I write u → u− u to introduce a “floating initial value of the evolution
parameter”—this so that both ∂

∂u and ∂
∂u will be meaningful.
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gauged formalism We build upon—meaning here literally “on top of”
—the theory just developed. Specifically, we write

L(ẋ, x, t) = 1
2m(ẋ + g t)2

↓
L(ẋ, x, t) ≡ L(ẋ, x, t) + d

dtΛ(x, t)

Λ(x, t) ≡ −mgxt− 1
6mg2t3

= 1
2mẋ2 −mgx

to describe the gauge transformation that brings L to standard free fall form.
We write

x −→ x = x

p −→ p = p−mgt

}
(38)

to describe the induced canonical recoordinatization of phase space. The gauged
Lagrangian can in this notation be described

L(ẋ, x) = 1
2mẋ2 −mgx

according to which we expect to be able to write

p = mẋ and H(p, x) = 1
2mp2 + mgx

And indeed: mẋ = mẋ = m ∂
∂p

{
1

2mp2 − g tp
}

= p − mgt = p while a general
argument

H(p, x) = ẋp− L = ẋ(p + ∂
∂xΛ) − (L + ẋ ∂

∂xΛ + ∂
∂tΛ)

= H(p, x) − ∂
∂tΛ(x, t)

= H(p− ∂
∂xΛ, x) − ∂

∂tΛ(x, t) (39)

can be used in the present instance to supply

H(p, x) =
[

1
2m (p + mgt)2 − g t(p + mgt)

]
−

[
−mgx− 1

2mg2t2
]

= 1
2mp2 + mgx

—precisely as was anticipated.

The canonical transformation (38) is readily seen to be Legendre-generated
by

F 2(p, x) ≡ x(p + mgt)

and Lie-generated by
G(p, x) = mgtx

If we construct
F (p, u;x, u) ≡ x[p + (u− u)mgt]
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we confirm by quick calculation that the Lie/Legendre generators stand in the
Hamilton-Jacobi relationship

G
(
p, ∂F (p,u;x,u)

∂p

)
− ∂F (p,u;x,u)

∂u = 0

G
(∂F (p,u;x,u)

∂x , x
)

+ ∂F (p,u;x,u)
∂u = 0

}
(40)

The Hamiltonian H(p, x) acquired an additive “extra term” by the gauge
mechanism (39). But if we had been unaware that the canonical transformation
(38) was recommended to our attention by a gauged Lagrangian then we would
not have know to make such an adjustment, but on the other hand would have
been led (by general theory and the circumstance that (39) is t -dependent) to
introduce the additive term ∂F 2/∂t. It is important to recognize that these
two procedures come to essentially the same thing

∂
∂tF 2(p, x) = mgx

− ∂
∂tΛ(x, t) = mgx + 1

2mg2t2

and would come to exactly the same thing if, in place of F 2(p, x) ≡ x(p + mgt),
we agreed to write F 2(p, x) ≡ x(p + mgt) + 1

6mg2t3. This we can do with
impunity, since in all applications the new F 2 precisely mimics the old one.
It would, however, be a mistake to make both additive adjustments. It was
mainly to clarify this point that I have allowed myself to schlog so pedantically
through the preceding material.

Bringing (29) to (38) we obtain the conflated canonical transformation

x = x− 1
2g t

2

p = p −mgt

}
(41)

of which the Legendre generators have the form

F2(p, x) ≡ (x− 1
2g t

2)(p + mgt) + f(t) : f(t) arbitrary

The transform of the free particle Hamiltonian H(p, x) = 1
2mp2 is

H(p, x) = 1
2m (p + mgt)2 +

[
− g tp + mg (x + 1

2gt
2) − 3

2mg2t2 + f
′
(t)

]
= 1

2mp2 + mgx +
[
f

′
(t) − 1

2mg2t2
]︸ ︷︷ ︸

|—vanishes if we set f(t) = 1
6mg2t3

The Lie generator is
G(p, x) ≡ mgtx− 1

2g t
2p

If we define

F (p, u;x, u) ≡ [x− (u− u) 1
2g t

2][p + (u− u)mgt] + 1
4mg2t3(u− u)2

then we find
G

(
p, ∂F (p,u;x,u)

∂p

)
− ∂F (p,u;x,u)

∂u = 0

G
(∂F (p,u;x,u)

∂x , x
)

+ ∂F (p,u;x,u)
∂u = 0
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The transformations described above were designed to extract the physics
of free fall from the physics of motion in the absence of forces. But they are
readily generalized, readily inverted: by straightforward modification they can
be used to adjust the value of g, and can in particular be used to turn g off—thus
to reverse the trend of the argument, to recover free motion from free fall.

The discussion acquires incidental interest from the fact that it provides
concrete illustrations of many of the most characteristic general principles of
Hamiltonian mechanics—principles that in the next section we apply to a
different objective.

12. Galilean covariance. Suppose now that at (24) we had assumed a(t) to
depended linearly on t:

x = x + v t (42)

Then (compare (25))

mẍ = 0 becomes mẍ = 0 (43)

If, on the other hand, (43) is stipulated then (42) is in effect forced : we have
come upon the birthplace of Galilean relativity, the source of the notion that
inertial frames move uniformly with respect to one another, the origin of the
statement that “free motion is a Galilean covariant concept.” More to the
immediate point: if x and x stand in the relation (42) then

mẍ = −mg becomes mẍ = −mg (44)

which gives back (43) in the special case g = 0 and informs us that “free fall is
a Galilean covariant concept.” We look now to some of the implications of that
fact.

Look to the solution x(t) = a+ bt− 1
2gt

2 of mẍ = −mg. When referred to
the X-frame that trajectory becomes

x(t) = a + (b− v)t− 1
2g t

2

≡ a + bt− 1
2g t

2

Manifestly, x(t) and x(t) are functions of the same design. But while

xmax = a + 1
2b

2/g : occurs at time t = b/g

the function x(t) assumes a different maximum

xmax = a + 1
2b

2/g

at a different time: t = b/g = t−v/g. The point at issue was illustrated already
in Figure 1.
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Turning now from the kinematic to the Lagrangian dynamical aspects of
the situation, and taking

L(ẋ, x) = 1
2mẋ2 −mgx : free fall lagrangian

as an obvious point of departure, we construct

L(ẋ, x, t) = L(ẋ + v, x + v t) = 1
2m(ẋ + v)2 −mg (x + v t)

which (gratifyingly, but not at all to our surprise) gives back (1)

d
dtm(ẋ + v) + ∂

∂xmg(x + v t) = m(ẍ + g) = 0

but does not much resemble the Lagrangian encountered at (7), from which it
is seen to differ by a gauge term:[

1
2m(ẋ + v)2 −mg (x + v t)

]
=

[
1
2mẋ2 −mgx

]
+ d

dt

(
mvx + 1

2mv2t− 1
2mgvt2

)
Evidently we must construe “Galilean transformation” to refer to a 2-step
process

x −→ x = x − vt

L −→ L = L + d
dtΛ

}
(45)

if we are to make manifest the Galilean covariance of the Lagrangian theory of
free fall. I spell out the detailed meaning and some immediate implications of
the second of the preceding statements:

L(ẋ, x) ≡ 1
2mẋ2 −mgx

↓
L(ẋ, x) = L(ẋ + v, x + v t) + d

dtΛ(x, t)

Λ(x, t) ≡ −mvx− 1
2mv2t + 1

2mgvt2

= 1
2mẋ2 −mgx

Collaterally
p ≡ ∂L/∂ẋ = mẋ

↓
p ≡ ∂L/∂ẋ = mẋ

= p−mv

The transformation
x −→ x = x− vt

p −→ p = p−mv

}
(46)

is trivially canonical: [x, p ] = 1. If we introduce the Type 2 generator

F2(p, x) ≡ (x− vt)(p + mv) + f(t)
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then we recover (42) by the Legendre process

x = ∂F2/∂p = x− v t

p = ∂F2/∂x = p + mv

Moreover, we have

H(p, x) = 1
2m (p + mv)2 + mg (x + vt) +

[
− v(p + mv) + f

′
(t)

]
= 1

2mp2 + mgx +
[
f

′
(t) − 1

2mv2 + mgvt
]

↓
= 1

2mp2 + mgx if we set f(t) = 1
2mv (v t− gt2)

Notice (compare page 15) that in the limit v ↓ 0 we are again left with the
familiar “Legendre generator of the identity”.

If we set
G(p, x) = mvx− v tp (47)

then Lie’s iterative process, as described on page 16, gives

x(u) = x− uvt

p(u) = p − umv

which reduces to the identity at u = 0 and at u = 1 gives back (46).

The canonical transformations (46) can be recovered (at u − u = 1) from
the following (u− u)-parameterized family of Legendre generators

F (p, u;x, u) ≡ [x− v t(u− u)][p + mv(u− u)] + 1
2mv2t(u− u)2

We are by now not surprised to discover (by calculation) that the generators
F (p, u;x, u) and G(p, x) stand in the H-J relation to one another:

G
(
p, ∂F (p,u;x,u)

∂p

)
− ∂F (p,u;x,u)

∂u = 0

G
(∂F (p,u;x,u)

∂x , x
)

+ ∂F (p,u;x,u)
∂u = 0

Special importance will attach (quantum mechanically) to the fact that
because Galilean transformations gauge the Lagrangian they gauge also the
dynamical action:

S = S + Λ
∣∣∣t1
t0

with Λ = −mv[x + 1
2vt− 1

2g t
2]

The point is established by computation: entrusting the details to Mathematica ,
we find

S(x1 + vt1, t1;x0 + vt0, t0) −mv[x1 + 1
2vt1 − 1

2gt
2
1]

+ mv[x0 + 1
2vt0 − 1

2gt
2
0]

= 1
2m

{ (x1 − x0)2

t1 − t0
− g(x1 + x0)(t1 − t0) − 1

12g
2(t1 − t0)3

}
= S(x1, t1;x0, t0)
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quantum dynamics of free fall

13. Dimensional analysis. The adjunction of � to the classically available
system-constants m and g permits the formation of a “natural length”

�g ≡
(

�
2

2m2g

)1
3 ≡ k–1 (48.1)

whence also of a “natural energy”

Eg ≡ mg�g =
(

mg2
�
2

2

)1
3 (48.2)

a “natural velocity”

vg ≡
√

2
mEg =

(
2g�

m

)1
3 (48.3)

a “natural time”
τg ≡ vg/g =

(
2�

mg2

)1
3 (48.4)

a “natural frequency”

ωg ≡ Eg/� =
(

mg2

2�

)1
3 = 1/τg (48.5)

and a “natural angular momentum” �g ·mvg = �. In preceding formulæ the 2’s
are dimensionally inessential, but natural to the ensuing quantum mechanics.

Looking to the numerical value of �g in some typical cases, we find (when
g is assigned a typical terrestrial value14)

�g =
{

0.0880795 cm : electron
0.0005874 cm : proton

The natural length is a decreasing function of mass

�g ∼ m− 2
3

and for macroscopic masses becomes very small indeed: for a mass of one gram
we find �g ≈ 10−21 cm.

The availability of a natural length permits the introduction—into the
quantum theory of free fall, but not into the classical theory—of a

dimensionless position variable : z ≡ kx = x/�g (49)

and of associated dimensionless time, energy, momentum . . . variables. It is in
terms of those variables that we will express our quantum mechanical results.
But their adoption raises a delicate point:

14 I use Mathematica’s AccelerationDueToGravity = 9.80665 m/s2.
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From the physical meaning of |Ψ(x)|2 we infer that dimensionally

[Ψ(x)] = (length)−
1
2

By calculus∫
|Ψ(x)|2 dx =

∫
|Ψ(x(z))|2 |dx/dz|dz =

∫
|Ψ(�gz)|2�gdz

and if we would write

=
∫

|ψ(z)|2 dz

we must posit that the wave function transforms as a scalar density of weight 1
2 :

ψ(z) =
√

�g · Ψ(�gz) : Ψ(x) =
√
k · ψ(kx) (50)

From (50) it follows that

[Ψ(x)] = (length)−
1
2 ⇐⇒ ψ(z) is dimensionless

I remark in passing that g = GM/R2 where G is the gravitational constant
and where M and R refer to the (gravitational) mass and mean radius of the
earth. If we were concerned with the quantum physics of a “gravitationally
bound Bohr atom” we would, in view of (48.1), find it natural to write

� =
(

�
2

2m2GM/�2

)1
3

which (if we discard the 2) gives

�Bohr = �
2

GMm2

where M � m refers now to the nuclear mass. Note the disappearance of the 1
3 :

evidently the 1
3 ’s in (48) are, like the 3 first encountered at (9), characteristic

features not of gravitational physics in general but of the free fall problem in
particular. But while the former arose from dimensional necessity the latter
sprang from the elementary circumstance that

∫
( 1
2g t

2) dt = 1
6g t

3; i.e., from
the triple integration of a constant.

14. Quantum mechanical free fall according to Schrödinger. The Schrödinger
equation reads {

− �
2

2m

(
∂
∂x

)2 + mgx
}

Ψ(x, t) = i� ∂
∂tΨ(x, t) (51)

The basic problem is to display the normalized solution of (51)∫ +∞

−∞
|Ψ(x, t)|2 dx = 1
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that conforms to the prescribed initial data Ψ(x, t0).

If Ψ(x, t) is assumed to possess the separated structure

Ψ(x, t) = Ψ(x) · e− i
�
E t

then (51) requires that Ψ(x) be a solution of the t-independent Schrödinger
equation {

− �
2

2m

(
d
dx

)2 + mgx
}

Ψ(x) = EΨ(x) (52)

which will serve as our point of departure.
Let (52) be written

(
d
dx

)2Ψ(x) = 2m2g
�2

(
x− E

mg

)
Ψ(x)

Now introduce the shifted/rescaled new independent variable y = k
(
x− E

mg

)
and

adopt the notation Ψ(x) =
√
k · ψ(y). The differential equation then becomes

(
d
dy

)2
ψ(y) = 2m2g

�2 k−3yψ(y)

which motivates us—as previously we were dimensionally motivated—to assign
to k the particular value k =

(
2m2g

�2

) 1
3 . The time-independent Schrödinger

equation is brought thus to the strikingly simple form

(
d
dy

)2
ψ(y) = y ψ(y) (53)

where—remarkably—the value of E has been absorbed into the definition of
the independent variable:

y ≡
(

2m2g
�2

) 1
3
(
x− E

mg

)
= k(x− a)

a ≡ E
mg =

{
maximal height achieved by a

particle lofted with energy E

≡ z − α (54)

Here a describes the classical “turning point” of the trajectory pursued by a
particle with energy E (see again Figure 1), and α ≡ ka provides a dimensionless
description of the turning point. We are, by the way, in position now to
understand why the anticipatory 2’s were introduced into the definitions (48).

At (53) we have Airy’s differential equation, first encountered in George
Airy’s “Intensity of light in the neighborhood of a caustic” ().15 The

15 At this point I begin to borrow directly from material that begins on
page 22 of Chapter 2: “Weyl Transform and the Phase Space Formalism” in
advanced quantum topics ().
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solutions are linear combinations of the Airy functions Ai(y) and Bi(y), which
are close relatives of the Bessel functions of orders ± 1

3 , and of which (since
Bi(y) diverges as y → ∞) only the former

Ai(y) ≡ 1
π

∫ ∞

0

cos
(
yu + 1

3u
3
)
du (55)

will concern us.16 To gain insight into the origin of Airy’s construction, write

f(y) = 1
2π

∫ +∞

−∞
g(u)eiyu du

and notice that f ′′ − yf = 0 entails

1
2π

∫ +∞

−∞

[
− u2g(u) + ig(u) d

du

]
eiyu du = 0

Integration by parts gives

1
2π ig(u)eiyu

∣∣∣+∞

−∞
− 1

2π

∫ +∞

−∞

[
u2g(u) + ig ′(u)

]
eiyu du = 0

The leading term vanishes if we require g(±∞) = 0. We are left then with a
first-order differential equation u2g(u)+ig ′(u) = 0 of which the general solution
is g(u) = A · ei 1

3 u3
. So we have

f(y) = A · 1
2π

∫ +∞

−∞
ei (yu+ 1

3 u3) du = A · 1
π

∫ ∞

0

cos
(
yu + 1

3u
3
)
du

It was to achieve ∫ +∞

−∞
Ai(y) dy = 1 (56)

that Airy assigned the value A = 1 to the constant of integration.

16 For summaries of the properties of Airy functions see Chapter 56 in Spanier
& Oldham, An Atlas of Functions () or §10.4 in Abramowitz & Stagun,
Handbook of Mathematical Functions (). Those functions are made familiar
to students of quantum mechanics by their occurance in the “connection
formulæ” of simple WKB approximation theory: see, for example, Griffiths’
§8.3, or C. M. Bender & S. A. Orszag, Advanced Mathematical Methods for
Scientists & Engineers (), §10.4.
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Returning with this mathematics to the quantum physics of free fall, we see
that solutions of the Schrödinger equation (52) can—in physical variables—be
described

ΨE(x) = (normalization factor) · Ai
(
k(x− aE)

)
(57.1)

where again

aE ≡ E
mg = classical turning point of a particle lofted with energy E

In dimensionless variables (57.1) becomes

ψE(z) = N · Ai(z − αE) (57.2)

where N is a normalization factor, soon to be determined.

It is a striking fact—evident in (57)—that the eigenfunctions ψE(z) all
have the same shape (i.e., are translates of one another: see Figure 5), and
remarkable also that the the energy spectrum is continuous, and has no least
member : the system possesses no ground state. One might dismiss this highly
unusual circumstance as an artifact, attributable to the physical absurdity of
the idealized free-fall potential

U(x) = mgx : −∞ < x < +∞

but then has to view with surprise the major qualitative difference between
the cases g �= 0 (no ground state) and g = 0 (ground state abruptly springs
into existence). I prefer to adopt the notion that “free fall” is free motion
relative to a non-inertial frame , and to trace that“major qualitative difference”
to the major difference between being/not being inertial.

The eigenfunctions ΨE(x) share with the free particle functions e±
i
�

√
2mE x

the property that they are not individually normalizable,17 but require assembly
into “wavepackets.” They do, however, comprise a complete orthonormal set,
in the sense which I digress now to establish. Let

f(z, α) ≡ Ai(z − α)

To ask of the α-indexed functions f(z, α)
• Are they orthonormal :

∫
f(z, α)f(z, β) dy = δ(α− β)?

• Are they complete:
∫
f(y, α)f(z, α) dα = δ(y − z)?

is, in fact, to ask the same question twice, for both are notational variants of
this question: Does∫ +∞

−∞
Ai(z − α)Ai(z − β) dz = δ(α− β) ?

17 Asymptotically Ai2(y) ∼ 1

π
√

|y|
sin2

(
2
3 |y|

3
2 + π

4

)
dies as y ↓ −∞, but so

slowly that the limit of
∫ 0

y
Ai2(u) du blows up.
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Figure 5: Free fall eigenfunctions ψE(z) with E< 0, E = 0, E > 0,
in descending order. The remarkable translational similarity of the
eigenfunctions can be understood as a quantum manifestation of
the self-similarity evident at several points already in the classical
physics of free fall (see again §3 and Figure 4).
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An affirmative answer (which brings into being a lovely “Airy-flavored
Fourier analysis”) is obtained as follows:

∫ +∞

−∞
Ai(z − α)Ai(z − β) dz

=
(

1
2π

)2∫∫∫
ei [(z−α)u+ 1

3 u3]ei [(z−β)v+ 1
3 v3] dudvdz

= 1
2π

∫∫
ei 1

3 (u3+v3)e−i(αu+βv)

{
1
2π

∫
eiz(u+v) dz

}
︸ ︷︷ ︸ dudv

δ(u + v)

= 1
2π

∫
ei 1

3 (v3−v3)︸ ︷︷ ︸ eiv(α−β) dv = δ(α− β)

1

So for our free fall wave functions we have “orthogonality in the sense of Dirac:”

∫ +∞

−∞
ψ∗

E′(z)ψE′′(z) dz = N2

∫ +∞

−∞
Ai

(
z − αE′)Ai

(
z − αE′′) dz

= N2 · δ(E′ − E′′)
↓
= δ(E′ − E′′) provided we set N = 1 (58.1)

The functions thus normalized are complete in the sense that

∫ +∞

−∞
ψ∗

E (z′)ψE(z′′) dE = δ(z′ − z′′) (58.2)

15. Construction & structure of the free fall propagator. Quite generally (subject
only to the assumption that the Hamiltonian is t -independent), eigenvalues En

and eigenfunctions Ψn(x), when assembled to produce the “propagator”

K(x1, t1;x0, t0) ≡
∑

n

Ψn(x1)Ψ
∗
n(x0)e

− i
�

En(t1−t0) (59)

permit one to describe the dynamical evolution of any prescribed initial state:

Ψ(x, t0) �−→ Ψ(x, t) =
∫

K(x, t;x0, t0)Ψ(x0, t0) dx0 (60)

The propagator, looked upon as an (x0, t0)-parameterized function of x and t,
is a solution of the t -dependent Schrödinger equation, distinguished from other
solutions by the property

lim
t↓t0

K(x, t;x0, t0) = δ(x− x0)
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In the present context (59) supplies

K(z, t; z0, 0) =
∫ +∞

−∞
ψE(z)ψ∗

E (z0)e−iEθ dE

where I have elected to work in dimensionless variables, noting that

E = Eg · E = (mg �g) · E :
{

relates physical energy E
to dimensionless energy E

t = τg · θ = (�/mg �g) · θ :
{ relates physical time t

to dimensionless time θ

entail
1
�
Et = Eθ

Notice also that the relationship between the energy E and the turning point a,
when expressed in terms of dimensionless variables, becomes

mg (�gα) = (mg�g)E : reduces to α = E

of which we will make free use. Working from

ψE(x) = Ai
(
z − α

)
= 1

2π

∫ +∞

−∞
ei ( 1

3 u3+[z−α]u) du

we have18

K =
(

1
2π

)2
∫∫∫

ei ( 1
3 u3+[z−α]u)ei ( 1

3 v3+[z0−α]v)e−iαθ dudvdα

=
(

1
2π

)2
∫∫∫

ei 1
3 (u3+v3)ei(zu+z0v)e−i(u+v+θ)α dadudv

= 1
2π

∫∫
ei 1

3 (u3+v3)ei(zu+z0v)δ(u + v + θ) dudv

= 1
2π

∫
ei 1

3 [v3−(v+θ)3]ei[z0v−z(v+θ)] dv

But v3 − (v + θ)3 = −3v2θ − 3vθ2 − θ3 so

= 1
2π e

−i( 1
3 θ3+zθ) ·

∫
e−iθv2−i[θ2+(z−z0)] dv

The sole surviving integral is (formally) Gaussian, and its elementary evaluation
supplies

K = 1
2π e

−i( 1
3 θ3+zθ) ·

√
2π
2iθ e

− 1
4iθ [θ2+(z−z0)]

2

=
√

1
4πiθ exp

{
i
[ (z − z0)2

4θ
+

[
1
2 (z − z0) − z

]
θ +

[
1
4 − 1

3

]
θ3

]}

18 The following argument was adapted from page 32 of some informal notes
“Classical/quantum mechanics of a bouncing ball” (March ) that record
the results of my first excursion into this problem area.
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Translation to physical variables gives

K = k · K

=
√

m
2πi�t exp

{
i
�

[
m
2t (x− x0)2 − 1

2mg(x + x0)t− 1
24mg2t3

]} (61)

Remarkably, this result (after a trivial notational adjustment: t �→ t1 − t0) can
be expressed

K(x1, t1;x0, t0) =
√

m
2πi�(t1−t0)

· e i
�

S(x1,t1;x0,t0) (62)

where S(x1, t1;x0, t0) is precisely the classical free-fall action function, first
encountered at (9). Some theoretical importance attaches also to the fact that

√
m

2πi�(t1−t0)
can be written

√
i
h

∂2S
∂x1∂x0

By way of commentary: if, into the Schrödinger equation (51), we insert

Ψ = Ae
i
�
S

we obtain

A
{

1
2m (Sx)2 + mgx + St

}
− i�

{
1

2m

[
ASxx + 2AxSx

]
+ At

}
︸ ︷︷ ︸−�

2 1
2mAxx = 0

= 1
2A

{
( 1

mSxA
2)x + (A2)t

}
Returning with this information to (62) we find that

• the leading
{}

vanishes because S satisfies the Hamilton-Jacobi equation
• the final term vanishes because A is x-independent
• the the middle

{}
—which brings to mind a “continuity equation,” of

precisely the sort that A2 = |ψ|2 is known in quantum mechanics to
satisfy (as a expression of the “conservation of probability”)—vanishes by
computation:(

1
m

[
m
t (x− x0) − 1

2mgt
]
1
t

)
x

+
(

1
t

)
t
= 1

t2 − 1
t2 = 0

16. Dropped Gaussian wavepacket. Let ψ be given initially by

ψ(z, 0) = 1√
σ
√

2π
e−

1
4 [z/σ]2 (63)

Then
|ψ(z, 0)|2 = 1

σ
√

2π
e−

1
2 [z/σ]2
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is a normalized Gaussian ∫ +∞

−∞
|ψ(z, 0)|2 dz = 1

with second moment

〈z2 〉 =
∫ +∞

−∞
z2|ψ(z, 0)|2 dz = σ2

Returning with (61) and (63) to (60), we confront the messy Gaussian integral

ψ(z, θ) =
√

1
4πiθ

1
σ
√

2π

∫
exp

{
i
[

1
4θ (z − z0)2 − 1

2 (z + z0)θ − 1
12θ

3
]
− 1

4σ2 z
2
0

}
dz0

Mathematica responds with a result

=
√

1
4πiθ

1
σ
√

2π
2
√
π
[

1
σ2 − i 1

θ

]− 1
2 · exp

{
1
12

6θ2z−3z2+θ4−12iσ2θz−4iσ2θ3

σ2+iθ

}
which we have now to disentangle. Look first to the prefactor, which after
simplifications becomes√

1
4πiθ

1
σ
√

2π
2
√
π
[

1
σ2 − i 1

θ

]− 1
2

=
√

1
Σ(t)

√
2π

Σ(t) ≡ σ
[
1 + i θ

σ2

]
= σ

√
1 +

(
θ

σ2

)2 · ei δ(θ)

≡ σ(θ) · ei δ(θ)

with δ(θ) ≡ arctan(θ/σ2). Look next to the argument of the exponential: we
find {

etc.
}

= − [z+θ2]2

4σ2(θ)
− i∆(z, θ)

where ∆(z, θ) is a complicated term the details of which need not concern us.
We now have

ψ(z, θ) = 1√
σ(θ)

√
2π

exp
{
− 1

4

[
z + θ2

σ(θ)

]2

− iφ(x, t)
}

with φ ≡ 1
2δ+β. The phase factor is of no present interest because it disappears

when we look to the probability density

|ψ(z, θ)|2 = 1
σ(θ)

√
2π

exp
{
− 1

2

[
z + θ2

σ(θ)

]2
}

(64.1)

If, in place of (63), we had written

ψ(z, 0) = eiρz · 1√
σ
√

2π
e−

1
4 [z/σ]2

then in place of (64.1) we would have obtained

|ψ(z, θ)|2 = 1
σ(θ)

√
2π

exp
{
− 1

2

[
z − 2ρθ + θ2

σ(θ)

]2
}

(64.2)
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In physical variables19 equations (64) become

|Ψ(x, t)|2=




1
s(t)

√
2π

exp
{
− 1

2

[x + 1
2g t

2

s(t)

]2
}

: dropped gaussian

1
s(t)

√
2π

exp
{
− 1

2

[x− vt + 1
2g t

2

s(t)

]2
}

: lofted gaussian

(65.1)

Equations (65) describe Gaussian distributions the centers of which move
ballistically, but which disperse hyperbolically20—just what you would expect
to see if the free particle result standard to the textbooks were viewed from a
uniformly accelerated frame.

17. Other dropped wavefunctions. What happens when you drop the familiar
free particle eigenfunction

Ψ(x, 0) = 1√
h
e

i
�

px : p an adjustable real constant

Immediately

Ψ(x, t) =
√

m
iht

1
h

∫
exp

{
i
�

[
m
2t (x− x0)2 − 1

2mg(x + x0)t

− 1
24mg2t3

]
+ i

�
px0

}
dx0

= 1√
h

exp
{

i
�

[
px− 1

2mp2t− g
{
mxt− 1

2pt
2 + 1

6mgt3
}]}

(66)

I have not been able to account term-by-term in an intuitively satisfying way
for the design of this result (see, however, §25 below), but have verified that
the function S(x, t; p) ≡

[
etc.

]
does in fact satisfy the Hamilton-Jacobi equation

(equivalently: Ψ(x, t) does satisfy the Schrödinger equation).

19 Recall from (50) that |Ψ|2 = k|ψ|2, define

s ≡ �gσ and s(t) ≡ �gσ(θ) = s

√
1 +

(
�t

2ms2

)2 (65.2)

and notice that θ2/σ = (mgt/�k)2/ks = 1
2g t

2. Also write ρz = 1
�
mvx to obtain

ρ = mv�g/� (dimensionless momentum), giving 2ρθ/σ = v t/s.
20 I say “hyperbolically” because

σ(t) = σ0

√
1 + (t/τ)2 : τ ≡ 2mσ2

0/�

can be written
(σ/σ0)

2 − (t/τ)2 = 1

Note that the dispersion law is g -independent.
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It is a curious (though self-evident!) fact that when you drop a free-fall
eigenfunction

ψ(x, 0) ≡ ψE(x)

it does not fall : it simply “stands there (levitates!) and buzzes”

ψ(x, 0) −→ ψ(x, t) = ψ(x, 0) · e− i
�

E(E)t (67)

I have described elsewhere a “quantum calculus of moments”21 that can be
used to show—very simply—that the phenomenon illustrated at (65) is in fact
not special to Gaussian wavepackets: every wavepacket falls in such a way that
〈x〉 moves ballistically, and ∆x grows hyperbolically. Equations (66) and (67)
do not provide counterexamples, for they refer to wavefunctions that are not
normalizable, do not describe quantum states—are, in short, not wavepackets.

18. Ladder operators for the free fall problem. The time-independent Schrödinger
equation (48) is a particular representation of the abstract equation

H |E) = E|E) with H ≡ 1
2m p2 + mg x (68)

From the fundamental commutation relation [x , p ] = i� I it follows familiarly22

that if T(ξ) refers to a member of the ξ-parameterized population of unitary
operators

T(ξ) ≡ e−
i
�

ξ p

then
x T(ξ) = T(ξ)(x + ξ I)
p T(ξ) = T(ξ) p

}
(69)

It follows that if x |x) = x|x) then x T(ξ)|x) = (x + ξ)T(ξ)|x); in other words

T(ξ)|x) = |x + ξ) : T(ξ) translates with respect to the x-spectrum

But because x enters linearly into the design of the free fall Hamiltonian we
have

H T(ξ) = T(ξ)(H + mgξ I)

which when applied to |E) gives

H T(ξ)|E) = (E + mgξ)T(ξ)|E)

In short:

T(ξ)|E) = |E + mgξ) : T(ξ) also translates with respect to the H-spectrum

21 advanced quantum topics () Chapter 2, page 51. The method is
an elaboration of the idea central to Ehrenfest’s theorem.

22 See Chapter 0, page 34 in the notes just cited.
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Using these two facts together, we find that if

ΨE(x) ≡ (x|E)

then
ΨE+mga(x) = (x|T(a)|E) = (x− a|E) = ΨE(x− a) (70)

We have thus accounted abstractly for a remarkable property of the free fall
eigenfunctions that was previously23 obtained analytically from the theory of
Airy functions. The defect of the argument is that it provides no hint that
ΨE(x) has anything to do with Airy functions, no indication of what |ΨE(x)|2
might look like when plotted.

The ladder operator technique is most familiar as encountered in the
quantum theory of the harmonic oscillator and the quantum theory of angular
momentum. We have seen that it enters also quite naturally into the quantum
theory of unobstructed free fall . . .but that in the latter application the ladder
has continuously indexed rungs! And no bottom rung!!

19. Schrödinger equation in the momentum representation. Define

ΦE(p) ≡ (p |E)

and observe that in the momentum representation the time-independent
Schrödinger equation (68) reads

{
1

2mp2 −mg
(

�

i
d
dp

)}
ΦE = EΦE (71)

or again (and more conveniently)

d
dpΦE = i

(
1

2m2g�
p2 − 1

mg�
E

)
ΦE

This is an ordinary differential equation of first order , and its solutions are
immediate:

ΦE(p) = A · exp
{
i
(

1
6m2g�

p3 − 1
mg�

Ep
)}

where A is an arbitrary complex constant. From this it follows24 that

ΨE(x) = 1√
2π�

∫ +∞

−∞
e

i
�

pxΦE(p) dp

= 1√
2π�

2A
∫ ∞

0

cos
{(

mgx−E
mg�

)
p + 1

3

(
1

2m2g�
p3

)}
dp

= 1√
2π�

(2m2g�)
1
3 2πA · 1

π

∫ ∞

0

cos
{
yu + 1

3u
3
}
du

23 See again page 26 and Figure 5.
24 See (82) on page 36 of Chapter 0 in advanced quantum topics ().
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where u ≡ p/(2m2g�)
1
3 and where y ≡

(
mgx−E

mg�

)
(2m2g�)

1
3 , in the notations

introduced at (48), can be described y = k(x − E/mg) = k(x − aE). Drawing
now upon the definition (55) of the Airy function, we have

ΨE(x) = 1√
2π�

(2m2g�)
1
3 2πA ·Ai

(
k(x− aE)

)
and to achieve detailed agreement with (50)/(58.1)—i.e., to achieve (in the
sense of Dirac) orthonormality of the eigenfunctions—we assign to A the value
that gives 1√

2π�
(2m2g�)

1
3 2πA =

√
k = (2m2g/�2)

1
6 . Which is to say: we set

A = (2π℘g)
− 1

2 where ℘g ≡ k� = �/�g = (2m2g�)
1
3

defines the “natural momentum” that might appropriately be added to the list
(48).

Thus by paraphrase of the argument encountered already on page 25 does
the Airy function make its entrance when (as apparently Landau was the first
to do) one elects to use (not the x-representation but) the p -representation in
approaching the quantum mechanics of free fall.

The time-dependent companion of (71) can be written{
i� ∂

∂t − 1
2mp2 − img�

∂
∂p

}
Φ(p, t) = 0

or again {
∂
∂p − i 1

2m2g�
p2 − 1

mg
∂
∂t

}
Φ(p, t) = 0 (72)

We have, however, the operator identity (“shift rule”)

{
∂
∂p − i 1

2m2g�
p2 − 1

mg
∂
∂t

}
= e+i 1

3 (p3/2m2g�)
{

∂
∂p − 1

mg
∂
∂t

}
e−i 1

3 (p3/2m2g�)

so (72) can be rendered

{
∂
∂p − 1

mg
∂
∂t

}
F (p, t) = 0 with F (p, t) ≡ e−i 1

3 (p3/2m2g�) · Φ(p, t)

This (compare (51)) is a partial differential equation of first order , and its
general solution is immediate:

F (p, t) = f(p + mg t) : f(•) arbitrary

The general solution of (72) can therefore be described

Φ(p, t) = f(p + mg t) · e+i 1
3 (p/℘)3 (73)

and gives

Ψ(x, t) = 1√
2π�

∫
f(p + mg t) ei[ 1

�
px+ 1

3 (p/℘)3] dp (74.1)

= 1√
2π�

∫
f(q) exp

{
i
[

1
�
(q −mgt)x + 1

3℘3 (q −mgt)3
]}

dq (74.2)
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From 1
2π�

∫
e

i
�
(p−q)x dx = δ(p− q) it follows almost immediately that∫

Ψ∗(x)Ψ(x) dx = 1 ⇐⇒
∫

f∗(q)f(q) dq = 1 (75)

Equations (73) & (74) are, as it happens, central to a recent paper by Miki
Wadati,25 and it is to Wadati that we owe the following observations:

• Set f(q) = Fδ(q) and obtain what Wadati calls the “plane wave solution”

Ψ(x, t) = 1√
2π�

F exp
{
i
[
− 1

�
mgxt− 1

3℘3 (mgt)3
]}

= 1√
2π�

F exp
{
− i

�
mg

[
x + 1

6g t
2
]
t
}

The placement of the t’s is a bit strange, but calculation confirms that in fact
− �

2

2mΨxx + mgxΨ− i�Ψt = 0. Necessarily [F ] = (momentum)
1
2 .

• Set f(q) = F exp
{
− i

�

E
mg q

}
and obtain

Ψ(x, t) = 1√
2π�

∫
F exp

{
− i

�

E
mg (p + mgt)

}
exp

{
i
[

1
�
px + 1

3℘3 p
3
]}

dp

= e−
i
�

Et · F 1√
2π�

℘

∫ +∞

−∞
exp

{
i
[
k(x− E

mg )u + 1
3u

3
]}

du : u ≡ p/℘

= e−
i
�

Et · F 1√
2π�

℘2π· 1
π

∫ ∞

0

cos
{
i
[
k(x− E

mg )u + 1
3u

3
]}

du

= e−
i
�

Et · F 1√
2π�

℘2π·Ai
(
k[x− E

mg ]
)

which comes into precise agreement with (53.1) when we set F 1√
2π�

℘2π =
√
k,

i.e., when we set F = 1/
√

2π℘.

25 “The free fall of quantum particles,” J. of the Phys. Soc. of Japan 68 , 2543
(1999). I am indebted to Oz Bonfim for this reference. Wadati is the director of
a condensed matter research group at the University of Tokyo, and in producing
what is to my knowledge the first paper addressed specifically to the quantum
mechanics of free fall (previous papers—uncited by him—treat the “quantum
bouncer” and related systems) took his motivation from the recent explosion
of interest in “falling Bose-Einstein condensates.” In that macroscopic context
the role of the Schrödinger equation is (we are informed) taken over by the
“Gross-Pitaevskii equation,” which accounts for Wadati’s interest in a
“hydrodynamic” formulation of his results. Wadati’s familiarity with the basics
of the problem appears to have been acquired from Landau & Lifshitz, Quantum
Mechanics: Non-relativistic Theory (3rd edition ), §24: “Motion in a
homogeneous field.” But Landau & Lifshitz have in mind a homogeneous
electrical field, so adopt a gravitationally-unnatural sign convention, which
Wadati is content to live with (in his theory things fall up). It appears to have
been the worked Problem attached to §24 that alerted Wadati to the advantages
to be gained from working in the momentum representation.
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• Set f(q) =F exp
{
− s2

�2 q
2−i 1

3℘3 q
3
}

and, after much tedious simplification
of the result reported by Mathematica, obtain

Ψ(x) = 1√
2π�

F�
√
π 1√

s2[1+i(�t/2ms2)]
exp

{
− (x + 1

2gt
2)2

4s2[1 + i(�t/2ms2)]

− i
�
mgt(x + 1

6g t
2)

}
=F

√
(�/s)

√
π/2 · 1√

s(t)
√

2π
exp

{
− 1

4

[x + 1
2g t

2

s(t)

]2

− iΦ(x, t)
}

If we set F =
[
(�/s)

√
π/2

]− 1
2 —which, by the way, is exactly the value needed

to achieve
∫
f∗(q)f(q) dq = 1—then we recover precisely the “dropped Gaussian”

wavefunction of page 30, described now in physical variables. And immediately
we recover the description (65.1) of |Ψ(x, t)|2.

• From (74.2) it follows at t = 0 that

Ψ(x, 0) = 1√
2π�

∫
f(q) exp

{
i
[

1
�
qx + 1

3℘3 q
3
]}

dq

and therefore that

f(q) exp
{
i 1
3℘3 q

3
}

= 1√
2π�

∫
Ψ(y, 0)e−

i
�

qy dy

Returning with this information to (74.2) we have

Ψ(x, t) = 1
2π�

∫∫
Ψ(y, 0)e−

i
�

q(y−x)

· exp
{
i
[
− 1

�
mgtx + 1

3℘3 (q −mgt)3 − 1
3℘3 q

3
]}

dqdy

=
√

m
i2π�t

∫
Ψ(y, 0) exp

{
i
�

[
m
2t (y − x− 1

2gt
2)2 −mgtx− 1

6mg2t3
]}

dy

=
√

m
i2π�t

∫
Ψ(y, 0) exp

{
i
�

[
m
2t (y − x)2 − 1

2mg (y + x)t− 1
24mg2t3

]}
dy

Wadati presents this result as a “note added in proof” which he declines to
discuss because he finds it to be in some respects problematic: he appears not
to appreciate that

[
etc.

]
is just the classical action (9), and that he has in effect

reconstructed the description (61) of the free fall propagator.

20. New solutions by space/time translation of old ones. If ψ(x, t) describes a
solution of (see again (51)) the free fall Schrödinger equation

HΨ− i� ∂
∂tΨ = 0 with H ≡

{
− �

2

2m

(
∂
∂x

)2 + mgx
}

(76)

then so also does Ψ(x, t) ≡ Ψ(x, t + T). The demonstration hinges on the
observations that

Ψ(x, t) = e−
i
�

H t Ψ(x, 0) ←−−−−−−−
t

Ψ(x, 0)
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entails

Ψ(x, t) = e−
i
�

H t Ψ(x, 0) ←−−−−−−−
t

Ψ(x, 0) = e−
i
�

HT Ψ(x, 0)

and that e−
i
�

HT commutes with ∂
∂t (this because the Hamiltonian H is

t -independent). Alternatively but equivalently, one might argue from the
obvious t -translation-invariance

K(x, t + T ;x0, t0 + T) = K(x, t;x0, t0)

of (see again (62)) the free fall propagator

K(x, t;x0, t0) =
√

m
2πi�(t−t0)

· e i
�

S(x,t;x0,t0)

where

S(x, t;x0, t0) = 1
2m

{
(x− x0)2

t− t0
− g(x + x0)(t− t0)− 1

12g
2(t− t0)3

}

We have, in the preceding paragraph, exposed the quantum counterpart of
the classical circumstance described in Figure 2. The situation becomes more
interesting when we look to the effect (Figure 3) of space translation

Ψ(x, t) �−→ Ψ(x + X, t) = eX
∂
∂x Ψ(x, t)

for e−
i
�

HT and the space translation operator eX
∂
∂x do not commute (except

in the case g = 0). Letting the latter act upon the Schrödinger equation (76)
we obtain an equation which can be written

HΨ(x + X, t) = i�
(

∂
∂t + i

�
mgX

)
Ψ(x + X, t)

= i�e−
i
�

mgX t ∂
∂te

+ i
�

mgX tΨ(x + X, t) by a shift rule

or again
HΨ(x, t) = i� ∂

∂tΨ(x, t)

Ψ(x, t) ≡ e
i
�

mgX t ·Ψ(x + X, t)

Alternatively, one might argue from the observation that

K(x + X, t;x0 + X, t0) = e−
i
�

mgX(t−t0) ·K(x, t;x0, t0)

The interesting point is that if we are to achieve “space-translational closure”
within the space of free fall wavefunctions then we must expand the meaning
of “translation” to include a suitably designed gauge factor.

Notice that if Ψ(x, t) is normalized then both of the processes

Ψ(x, t) �−→ Ψ(x, t) = Ψ(x, t + T) (77.1)

Ψ(x, t) �−→ Ψ(x, t) = e
i
�

mgX t ·Ψ(x + X, t) (77.2)

give rise to wavefunctions that are also normalized.
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21. New solutions by Galilean transformation of old ones. Hit the Schrödinger
equation (76) with the t -dependent space-translation operator evt∂x and
—noting that evt∂x∂t = [∂t − v∂x]evt∂x—obtain

HΨ(x + vt, t) = i�
([

∂
∂t − v ∂

∂x

]
+ i

�
mgvt

)
Ψ(x + vt, t)

But
H + i�v∂x = − �

2

2m

[
∂x − i

�
mv

]2 + mgx− 1
2mv2

= e+ i
�
mv x

{
− �

2

2m∂2
x + mgx

}
e−

i
�
mv x − 1

2mv2

so we have

e+ i
�
mv x

{
− �

2

2m∂2
x + mgx

}
e−

i
�
mv xΨ(x + vt, t)

= i�
(
∂t − i

�

1
2mv2 + i

�
mgvt

)
Ψ(x + vt, t)

= i�e+ i
�

1
2 mv[vt−gt2]∂te

− i
�

1
2 mv[vt−gt2]Ψ(x + vt, t)

This can be written HΨ(x, t) = i�∂tΨ(x, t) where Ψ(x, t) is defined now by the
process

Ψ(x, t) �−→ Ψ(x, t) ≡ e−
i
�
[mv(x− 1

2 gt2)+ 1
2 mv2t] ·Ψ(x + vt, t) (77.3)

To gain a clearer sense of what we have accomplished, we notice that
initially

Ψ(x, 0) = e−
i
�

mvx ·Ψ(x, 0)

where the factor e−
i
�

mvx serves in effect to “launch” Ψ(x, 0), and that free-fall
propagation of Ψ(x, 0) produces

Ψ(x, t) =
∫

K(x, t; y, 0)e−
i
�

mvy ·Ψ(y, 0) dy

=
∫

K(x + v t, t; y, 0)e−
i
�
[mv(x− 1

2 gt2)+ 1
2 mv2t] ·Ψ(y, 0) dy

= e−
i
�
[mv(x− 1

2 gt2)+ 1
2 mv2t] ·

∫
K(x + v t, t; y, 0)Ψ(y, 0) dy

= e−
i
�
[mv(x− 1

2 gt2)+ 1
2 mv2t] ·Ψ(x + v t, t)

= e
i
�
Λ(x,t) ·Ψ(x + v t, t

where Λ(x, t) ≡ −mvx− 1
2mv2t+ 1

2mgvt2 is precisely the gauge term that was
seen (§12) to be central to the Galilean covariance of classical free fall.

Again: if Ψ(x, t) is normalized then so also is Ψ(x, t). The transformations
(77) are presented by Wadati, but without supporting discussion.
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22. The free particle limit of the quantum mechanics of free fall. Trivially{
− �

2

2m

(
∂
∂x

)2 + mgx
}
ψ(x, t) = i� ∂

∂tψ(x, t) (51)

↓{
− �

2

2m

(
∂
∂x

)2
}
ψ(x, t) = i� ∂

∂tψ(x, t) : free particle Schrödinger equation

and

Kg(x, t;x0, 0) =
√

m
2πi�t exp

{
i
�

[
m
2t (x− x0)2− 1

2mg(x + x0)t− 1
24mg2t3

]}
(61)

↓
K0(x, t;x0, 0) =

√
m

2πi�t exp
{

i
�

[
m
2t (x− x0)2

]}
: free particle propagator

when gravity is turned off: g2 ↓ 0. More interesting is the question: What
happens to the eigenfunctions? How do the Airy functions manage to become
exponentials? One might adopt a strategy

Kg −−−−−−−−−−−−−−−−−−−−−−−−−→
g2↓0

K0

↑ | (78)
| ↓

free fall eigenfunctions free motion eigenfunctions

that exploits the unproblematic meaning of Kg −→ K0. But there are things
to be learned from the attempt to proceed directly, by asymptotic analysis.
The following remarks have been abstracted from the discussion that appears
on pages 48–52 of some notes already cited,21 where I found the problem to be
surprisingly ticklish.

Borrowing from page 29, we have

ΨE(x) =
√
k ·Ai

(
k[x− a]

)
=
√
k · 1

2π

∫ +∞

−∞
ei ( 1

3 u3+k[x−a]u) du

with
k ≡

(
2m2g

�2

)1
3

a ≡ E
mg : becomes ∞ as g ↓ 0 with E held constant

A slight notational adjustment gives

Ψg(x;E) ≡ ΨE(x) =
√
k · 1

2π

∫ +∞

−∞
eia ( 1

3a u3+k[xa−1]u) du

which by a change of variable u �→ w : w3 ≡ 1
au

3 becomes

= 1
2π

√
k
ka

1
3

∫ +∞

−∞
eia ( 1

3 w3+ka1/3[xa−1]w) dw
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Introducing the abbreviation

B ≡ ka
1
3 =

[
2m2g

�2 · E
mg

] 1
3 =

[
2mE

�2

] 1
3 : [B ] = (length)−

2
3

and noticing in this connection that [w ] = (length)−
1
3 , we have

Ψg(x;E) = 1
2π

√
k
B

∫ +∞

−∞
eiah(w) dw (79.1)

with h(w) ≡ 1
3w

3 + B
[x
a − 1

]
w (79.2)

Our objective is to extract

↓
Ψ±

0 (x;E) = 1√
2π�

e±
i
�

px : p ≡
√

2mE (80)

in the limit g2 ↓ 0, but several points merit comment in advance of any such
effort:
• The cases g2 > 0 and g = 0 are in important respects conceptually distinct .
The “natural length,” “natural energy,” etc. that arise (see again §14) when
g �= 0 are not available (become meaningless) when g = 0. The energy spectrum
is non-degenerate when g �= 0,but becomes abruptly doubly-degenerate at g = 0.
[H , p ] = O requires g = 0: only in the absence of gravity can p be used to
identify energy eigenstates (i.e., to resolve the degeneracy, which in the case
g �= 0 is absent).
• The functions Ψg(x;E) and Ψ±

0 (x;E) are dimensionally distinct

[Ψg (x;E)] = (length)
1
2− 2

3− 1
3 = (length)−

1
2

[Ψ±
0 (x;E)] = (length ·momentum)−

1
2

so any attempt to achieve Ψ±
0 (x;E) = limg2↓0 Ψg(x;E) is—already for this

reason alone—foredoomed. Look more closely to the situation. Ψg(x;E) is
co-dimensional with objects of type (x|Ψ) but—since not normalizable—is not
itself such an object: notated (x|E), it awaits insertion into expressions of the
form

(x|Ψ) =
∫

(x|E) dE (E|Ψ)

—the implication being that, since [(x|E)] = (length · energy)−
1
2 , we should be

looking to the asymptotics of26

(x|E)g ≡ 1
2π

√
mg B

∫ +∞

−∞
eiah(w) dw (81)

26 Here I make use of Egk = mg.
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On the other hand, (x|p) = 1√
2π�

e
i
�

px awaits insertion into expressions of the
form

(x|Ψ) =
∫

(x|p) dp (p |Ψ) : dp = m√
2mE

dE

Bearing these points in mind, and agreeing to rest content with a somewhat
impressionist line of informal argument . . .

We note that (81) is of such a form as to invite attack by the “method of
stationary phase,”27 which would give

(x|E)g ∼ 1
2π

√
mg B

[ 2π
ah′′(w0)

] 1
2
ei[ah(w0) + π

4 ]

where w0 marks a point at which h(w) assumes a locally extremal value. From

h
′
(w) = w2 + B

[x
a − 1

]
= 0 we have w0 = ±

√
B

[
1− x

a
]

To maintain the reality of w0 we will enforce the restriction a > x. From
h

′′(w0) = 2w0 we see that w0 marks a local minimum/maximum according
as w0 ≷ 0; i.e., according as we select the upper sign or the lower. We now
have

(x|E)g ∼ 1
2π

√
mg B


 2π

a2
√
B

(
1− x

a
)



1
2

e±i
π
4 · eiah(w0)

But Mathematica supplies

B


 2π

a2
√
B

(
1− x

a
)



1
2

=
√
πB

3
4 1√

a

{
1 + 1

4
x
a + 5

32

(x
a

)2 + · · ·
}

and

h(w0) = ∓ 2
3

[
B

(
1− x

a
)] 3

2
= ∓B 3

2

{
2
3 − x

a + 1
4

(x
a

)2 + · · ·
}

so in leading asymptotic approximation we have

(x|E)g ∼ 1
2π

√
mga

√
πB

3
4 e±i

π
4 · e∓iaB

3
2
{

2
3 − x

a
}

Finally use mga = E and B
3
2 =

√
2mE
�
≡ 1

�
p to obtain

=
√
p/2E · 1√

2π�
e±

i
�
px · ei (phase) (82)

The argument, as presented, is very rough, but (if we dismiss the phase factor
as an unphysical artifact) has at least led us to a result that possesses both
the functional design of the free particle eigenstate (x|p) and the anticipated
dimensionality (length · energy)−

1
2 .

27 See A. Erdélyi, Asymptotic expansions (), page 51. Also of special
relevance is Erdélyi’s §2.6.
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23. Recovery of the quantum mechanics of free fall from free particle theory. The
problem studied in the preceding section

free fall eigenfunctions −−−−−−−−−−−−−−−−−−→
g turned OFF

free motion eigenfunctions

(and found there to be surprisingly difficult) is of less interest to me than its
inversion:

free fall eigenfunctions←−−−−−−−−−−−−−−−−−−
g turned ON

free motion eigenfunctions

The motivating questions—How does the quantum motion of a free particle
come to look “gravitational” when viewed from an accelerated frame? How do
Airy functions arise transformationally from exponentials?—clearly call for the
development of a more powerful line of attack, for asymptotic analysis, since it
entails the abandonment of information, cannot be carried out “in reverse.”

Exploiting the well known fact that the canonical transformations of
classical mechanics correspond to the unitary transformations of quantum
mechanics (from which they can be recovered by passage to the classical limit),
we proceed in quantum imitation of arguments developed in §11.

It proves simplest to take as our specific point of departure what on
page 14 I called the “ungauged formalism.” Introduce the u -parameterized
family of t -dependent unitary operators

U(t, u) ≡ e
u
i� G(t) with G(t) ≡ − 1

2g t
2 p

and construct28

x(u) = U –1(t, u)x U(t, u)
= x − u

i� [G , x ] + 1
2!

(
u
i�

)2[G , [G , x ]]− 1
3!

(
u
i�

)3[G , [G , [G , x ]]] + · · ·
= x − u 1

2g t
2 I

p(u) = U –1(t, u)p U(t, u)
= p − u

i� [G , p ] + 1
2!

(
u
i�

)2[G , [G , p ]]− 1
3!

(
u
i�

)3[G , [G , [G , p ]]] + · · ·
= p

At u = 0 we recover the identity transformation, while at u = 1 we obtain an
operator analog of (29):

x −→ x = U –1 x U = x − 1
2g t

2 I

p −→ p = U –1 p U = p

}
(83)

Here I have adopted the abbreviated notation U ≡ U(t) ≡ U(t, 1). And in

28 We make use here of the operator identity at appears as (72.1) in quantum
mechanics (), Chapter 0. And of course, the brackets [•, •] here signify
not Poisson brackets but commutators. The results stated are all implications
of the fundamental relation [x , p ] = i� I .
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order to mimic (29)—in order to “set x and p into motion”—I have been obliged
to work in what in quantum dynamics is called the “Heisenberg picture.”29 But
our objectives are better served if we work in the “Schrödinger picture,” as will
soon emerge.

For a free particle we have (in the Schrödinger picture)

H |Ψ) = i�∂t|Ψ) with H ≡ 1
2m p2

Multiplication by U gives

U H U –1|ψ) = i�U∂t U
–1|ψ) with |ψ) ≡ U |Ψ) (84.1)

= i�
{
∂t + U(∂t U

–1)
}
|ψ)

↓
HHH |ψ) = i�∂t|ψ) with HHH ≡ U H U –1 − i�U(∂t U

–1) (84.2)

But from the stipulated design of U it follows that U(∂t U
–1) = 1

i�g tp , so we
have

HHH = 1
2m p2 − g tp (85)

= 1
2m (p −mgt I)2 − 1

2mg2t2 I

= e
i
�
mgtx{

1
2m p2 − 1

2mg2t2 I
}
e
− i

�
mgtx

and the transformed free particle Schrödinger equation becomes

{
1

2m p2 − 1
2mg2t2 I

}
e
− i

�
mgtx |ψ) = e

− i
�
mgtx

i�∂t|ψ)

=
(
i�∂t −mg x

)
e
− i

�
mgtx |ψ)

Simple rearrangement gives

{
1

2m p2 + mg x
}
e
− i

�
mgtx |ψ) =

(
i�∂t + 1

2mg2t2
)
e
− i

�
mgtx |ψ)

29 In the Heisenberg picture

operators move by the rule A −→ U –1 A U

states move by the rule |ψ) −→ |ψ)

while in the Schrödinger picture

operators move by the rule A −→ A

states move by the rule |ψ) −→ U |ψ)

Inner products in either case transform (ψ|A |ψ) −→ (ψ|U –1 A U |ψ).
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But (
i�∂t + 1

2mg2t2
)

= e
i
�

1
6mg2t3

i�∂te
− i

�

1
6mg2t3

so we arrive finally at an equation that can be written

H |Ψ) = i�∂t|Ψ)

with

H ≡ 1
2m p2 + mg x and |Ψ) ≡ e

− i
�
[mgtx + 1

6mg2t3 I ] · U |Ψ)

In the x-representation this becomes

{
1

2m

(
�

i ∂x

)2 + mgx
}

Ψ(x, t) = i�∂tΨ(x, t) (86.1)

with

Ψ(x, t) ≡ (x|Ψ)

= e
− i

�
[mgtx + 1

6mg2t3] ·Ψ(x + 1
2g t

2, t) (86.2)

—the assumption here being that Ψ(x, t) is any solution of

{
1

2m

(
�

i ∂x

)2
}

Ψ(x, t) = i�∂tΨ(x, t) (86.3)

Equations (86) register a claim that is readily confirmed by direct calculation.
The preceding argument raises several points that merit comment:

• At (32) the term g tp that enters into the design of H(p, x) was attributed (via
∂F2/∂t) to the t -dependence of the Legendre generator F2. At (85) the term
g tp that enters into the similar design of HHH is attributed (via i�U(∂t U

–1)) to
the t -dependence of U .

• It is an immediate implication of (86.2) that if Ψ(x, t) is normalized then so
also is free fall wavefunction Ψ(x, t).

• The exponientiated expression in (86.2) has been familiar to us as a classical
object since (on page 17) we had occasion to introduce

Λ(x, t) ≡ −mgxt− 1
6mg2t3

We used gauge arguments in the guise of shift rules to bring about an
adjustment −g tp −→ mg x in the design of the transformed Hamiltonian.

The argument would have assumed a different appearance if we had taken
the “gauged formalism” (page 17)—or better still: the “conflated formalism”
(page 18)—as our point of departure. I will, in fact, look to the latter, since
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the exercise raises a point of analytical interest, and yields a result that will be
of importance in the sequel. If we write (compare page 43)

U(t, u) ≡ e
u
i� G(t) with G given now by G(t) ≡ mgtx − 1

2g t
2 p

then

x(u) = U –1(t, u)x U(t, u)
= x − u

i� [G , x ] + 1
2!

(
u
i�

)2[G , [G , x ]]− 1
3!

(
u
i�

)3[G , [G , [G , x ]]] + · · ·
= x − u 1

2g t
2 I

p(u) = U –1(t, u)p U(t, u)
= p − u

i� [G , p ] + 1
2!

(
u
i�

)2[G , [G , p ]]− 1
3!

(
u
i�

)3[G , [G , [G , p ]]] + · · ·
= p − umgt I

which at u = 1 give (in the Heisenberg picture) the quantum analog of (41):

x −→ x = U –1 x U = x − 1
2g t

2 I

p −→ p = U –1 p U = p − mgt I

}
(83)

Reverting now to the Schrödinger picture, we find that

H |Ψ) = i�∂t|Ψ) with H ≡ 1
2m p2

becomes
HHH |ψ) = i�∂t|ψ) with |ψ) ≡ U |Ψ)

HHH ≡ U H U –1 − i�U(∂t U
–1)

These equations are structurally identical to (84), but U has now a different
meaning, and we must work a bit to evaluate U(∂t U

–1) = −(∂t U)U –1.

mathematical digression: Let30

W ≡ e
i
�
(αp+β x ) = e

1
2

i
�

αβe
i
�

β x e
i
�

αp

and assume the parameters α and β to be t -dependent. Then

∂t W = i
�

[{
1
2∂t(αβ) + (∂tβ)x

}
W + (∂tα)e

1
2

i
�

αβe
i
�

β x pe
i
�

αp
]

But e
i
�

β x p = (p − β I)e
i
�

β x so we have

∂t W =A W

A = i
�

[
1
2∂t(αβ) + (∂tβ)x + (∂tα)(p − β I)

]
= i

�

[
(∂tβ)x + (∂tα)p + 1

2

{
α(∂tβ)− β(∂tα)

}]
In the case of immediate interest α = 1

2g t
2 and β = −mgt, which give

U(∂t U
–1) = 1

i�

[
−mg x + g tp + 1

4mg2t2 I
]

end of digression

30 Here I borrow freely from the early pages of Chapter 2 in quantum
mechanics (). See especially equation (9.1).
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We therefore have

HHH = 1
2m (p + mgt I)2 + mg x − g tp − 1

4mg2t2 I

= 1
2m p2 + mg x + 1

4mg2t2 I

giving {
1

2m p2 + mg x
}

U |ψ) = (i�∂t − 1
4mg2t2)U |ψ)

But (
i�∂t − 1

4mg2t2
)

= e
− i

�

1
12mg2t3

i�∂te
i
�

1
12mg2t3

and (drawing once again upon the operator-ordering identity that was central
to the digression on the preceding page—an identity usually attributed to
W. O. Kermack & W. H. McCrea ())

U = e
1
2

i
�
αβ

e
i
�
β x

e
i
�
αp

= e
− 1

4
i
�
mg2t3

e
− i

�
mgtx

e
i
�

1
2gt

2 p

so in the x-representation we have

Ψ(x, t) = (x|e
i
�

1
12mg2t3

U |ψ)

= e
i
�

[
−mgtx +

(
1
12 − 1

4

)
mg2t3

]
e

i
�

1
2gt

2
(

�

i ∂x

)
Ψ(x, t)

= e
i
�
[−mgtx− 1

6mg2t3]
Ψ(x + 1

2gt
2, t)

Thus do we recover precisely (86). Along the way we encountered (as we
encountered already on page 18) a mysterious factor 1

4 but have this time been
in position to watch it play its role and disappear: 1

12 − 1
4 = − 1

6 .

I conclude this discussion with sketches of a couple of entirely different
lines of argument:

Let Ψ(x, t) be—as before—any solution of the free particle Schrödinger
equation

�
2

2m∂2
xΨ + i�∂tΨ = 0

Write

Ψ(x, t) ≡ e
i
�
f(x, t) ·Ψ(x + 1

2gt
2, t)

and ask: What must be the structure of f(x, t) if Ψ(x, t) is to be a solution of
the free fall equation �

2

2m∂2
xΨ−mgxΨ + i�∂tΨ = 0? Entrusting the calculation

to Mathematica (from whom also we borrow a non-standard device for notating
partial derivatives), we find that necessarily

−i�
{
g t + 1

mf (1,0)
}
Ψ(1,0) +

{
mgx + f (0,1) + 1

2m [f (1,0)]2 − i� 1
2mf (2,0)

}
Ψ

= �
2

2mΨ(2,0) + i�Ψ(0,1)

= 0 by assumption
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which entails

f (1,0) + mg t = 0

2m2gx + 2mf (0,1) + [f (1,0)]2 − i�f (2,0) = 0

The former condition supplies

f(x, t) = −mgxt + ϕ(t) : ϕ(t) arbitrary

which when introduced into the latter condition gives 2mϕ
′ + m2g2t2 = 0, the

implication being that

ϕ(t) = − 1
6mg2t3 + arbitrary constant

We are brought thus to the (independently verifiable) conclusion that if Ψ(x, t)
is any solution of �

2

2m∂2
xΨ + i�∂tΨ = 0 then

Ψ(x, t) = e
− i

�
[mgxt + 1

6mg2 t3] ·Ψ(x + 1
2gt

2, t)

is a solution of �
2

2m∂2
xΨ −mgxΨ + i�∂tΨ = 0.31 It follows in particular that32

Ψ(x + 1
2gt

2, t) itself satisfies

{
1

2m

(
�

i ∂x −mgt
)2 + mgx−

(
i�∂t + mgx + 1

2mg2t2
)}

Ψ(x + 1
2gt

2, t) = 0

which again is susceptible to immediate direct verification. Notice especially
that there are here two references to the gravitational potential mgx, which
cancel. And that after simplifications the preceding equation reads

{
1

2m

(
�

i ∂x

)2 − g t
(

�

i ∂x

)
− i�∂t

}
Ψ(x + 1

2gt
2, t) = 0

—the validity of which is transparent.

31 And so, of course, is Ψ(x, t) · e i
�
(arbitrary constant).

32 We make use here of the shift rules

(
�

i ∂x

)
e
− i

�
[mgxt + 1

6mg2 t3]
= e
− i

�
[mgxt + 1

6mg2 t3](
�

i ∂x −mgt
)

(
i�∂t

)
e
− i

�
[mgxt + 1

6mg2 t3]
= e
− i

�
[mgxt + 1

6mg2 t3](
i�∂t + mgx + 1

2mg2t2
)
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Still more simply: observe—unmotivatedly, it might appear—that from

S0(x, t;x0, t0) = 1
2m

{ (x− x0)2

t− t0

}
: free particle action function

it follows that

S0(x + 1
2g t

2, t;x0, t0)− [mgxt + 1
6mg2 t3]

= 1
2m

{ (x− x0)2

t
− g(x + x0)t− 1

12g
2t3

}
= Sg(x, t;x0, 0) : free fall action function

and therefore (see again (61)) that

Kg(x, t;x0, 0) = e
− i

�
[mgxt + 1

6mg2 t3] ·K0(x + 1
2g t

2, t;x0, 0) (87)

which can be considered to lie at the elegant heart of (86).

24. EXAMPLE: From standing Gaussian to Gaussian in free fall. We struggled a
bit in §16 to develop a description of a “dropped Gaussian wavepacket,” but find
ourselves in position now to accomplish that and similar tasks almost trivially.
We consider it to be known33 that if initially

Ψ(x, 0) =
[

1
σ
√

2π

] 1
2

exp
{
− 1

4
x2

σ2

}

then by free quantum motion

Ψ(x, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{
− 1

4
x2

σ2[1+i(t/τ)]

}

where τ ≡ 2mσ2/� . The results now in hand inform us that if that initial
wavepacket had been “dropped” then the evolved packet would instead be
described

Ψ(x, t) = e
− i

�
[mgxt + 1

6mg2 t3] ·
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{
− 1

4

(x+ 1
2 gt2)2

σ2[1+i(t/τ)]

}

The description (65.1) of |Ψ(x, t)|2 immediately follows.

33 See Gaussian wavepackets (), page 4.



50 Classical/quantum motion in a uniform gravitational field: free fall

25. Dropped eigenfunctions. The energy spectrum of a free particle is continuous
and doubly degenerate. But [H , p ] = 0 and the spectrum of p is non-degenerate:
it becomes natural therefore to use the momentum operator to resolve the
degeneracy of the energy operator; i.e., to exploit the fact that if p|p) = p |p)
then H |p) = E|p) with E = 1

2mp2. In x-representation we write

Ψ(x,0; p) = 1√
h

exp
{

i
�
px

}
which when set into quantum motion becomes

Ψ(x, t ; p) = 1√
h

exp
{

i
�

[
px− 1

2mp2t
]}

But if such an initial function were “dropped” then, according to (86.2), we
would instead obtain

Ψ(x, t; p) = e
− i

�
[mgxt + 1

6mg2 t3] · 1√
h

exp
{

i
�

[
p(x + 1

2gt
2)− 1

2mp2t
]}

(88)

≡ eiβ(x, t) · 1√
h

exp
{

i
�

[
p(x + 1

2gt
2)− 1

2mp2t
]}

This exactly reproduces a result which at (66) we found to be in some respects
perplexing (and provides yet another approach to the derivation of (86)). But
the point of interest is that Ψ(x, t; p) is not of the form ψ(x)e−

i
�
Et :

Dropped free particle eigenfunctions are not
eigenfunctions of the free fall Hamiltonian

. . . though they are solutions of the free fall Schrödinger equation. To reproduce
the buzzing free fall eigenfunctions the functions Ψ(x, t; p) must be “assembled”
(taken in appropriate linear combination). How is that to be accomplished?

The functions Ψ(x, t; p) are readily shown to be (at every t) orthonormal
and complete∫

Ψ∗(x, t; q)Ψ(x, t; p) dx = 1
h

∫
exp

{
i
�

[
(p− q)(x + 1

2gt
2)− 1

2m (p2 − q2)t
]}

= exp
{

i
�

[
(p− q) 1

2gt
2 − 1

2m (p2 − q2)t
]}
· δ(p − q)

= δ(p − q)∫
Ψ∗(y, t; p)Ψ(x, t; p) dp = ei[β(x, t)− β(y, t)] · 1

h

∫
exp

{
i
�
p(x− y)

}
dy

= ei[β(x, t)− β(y, t)] · δ(x− y)
= δ(x− y)

The implication is that solutions Ψ(x, t) of the free fall Schrödinger equation
can—quite generally—be written

Ψ(x, t) =
∫
c(p)Ψ(x, t; p) dp (89.1)

c(p) =
∫

Ψ∗(y, t; p)Ψ(y, t) dy (89.2)
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and that so in particular can the buzzing free fall eigenfunctions34

Ψ(x, t; a) ≡ e
− i

�
mgat ·

√
k Ai

(
k(x − a)

)
= e

− i
�
mgat ·

√
k 1

2π

∫ +∞

−∞
e
i[k(x − a)u + 1

3u3]
du

In the latter instance we have

ca(p) =
∫

e
i
�
[mgyt + 1

6mg2 t3] · 1√
h

exp
{
− i

�

[
p(y + 1

2gt2) − 1
2mp2t

]}

·
{

e
− i

�
mgat ·

√
k 1

2π

∫ +∞

−∞
e
i[k(y − a)u + 1

3u3]
du

}
dy

= 1
2π

√
k · e

i
�
[ 16mg2 t3 − 1

2pgt2 + 1
2mp2t − mgat ]

·
∫ {

1√
h

∫
e

i
�
[mgyt − py + �kyu]

dy

}
︸ ︷︷ ︸

e
i[−kau + 1

3u3]
du

√
hδ(℘u − p + mgt) : ℘ ≡ �k = (2m2g�)

1
3

But δ(℘u − p + mgt) = ℘–1δ
(
u − p − mgt

℘
)

so the double integral becomes∫ {
etc.

}
e
i[stuff]

du = ℘–1
√

h exp
{

i
[
− ka

p − mgt
℘ + 1

3

(p − mgt
℘

)3
]}

= ℘–1
√

h exp
{

i
�

[
− a(p − mgt) + 1

6

(p − mgt)3

m2g

]}

Returning with this information to the preceding equation, and entrusting the
simplifications to Mathematica, we obtain

ca(p) = 1
2π ℘–1

√
kh · e

i
�
[−ap + 1

3 (p3/2m2g)]
(90.1)

from which—miraculously, but as anticipated/required—all reference to t has
disappeared. Introducing this result into the right side of (89.1) we obtain∫

c(p)Ψ(x, t; p) dp

= 1
2π ℘–1

√
kh e

− i
�
[mgxt + 1

6mg2 t3]

· 1√
h

∫
exp

{
i
�

[
p(x − a + 1

2gt2) − 1
2mp2t + 1

3 (p3/2m2g)
]}

dp

A change of variables p = ℘u gives

=
√

k e
− i

�
[mgxt + 1

6mg2 t3]

· 1
2π

∫
exp

{
i
[
ku(x − a + 1

2gt2) − 1
2m�

℘2u2t + 1
3u3

]}
du

34 See again page 35. I have elected to use a (location of the turning point)
rather than E = mga to label the eigenfunctions.
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which at t = 0 simplifies markedly to yield the gratifying result∫
c(p)Ψ(x, 0; p) dp =

√
k · 1

2π

∫
exp

{
i
[
ku(x − a) + 1

3u3
]}

du

=
√

k Ai
(
k(x − a)

)
= Ψ(x, 0; a)

To deal with the case t �= 0 we have to work a bit: we notice that

1
3u3 − 1

2m�
℘2u2t + 1

2kugt2 − 1
6mg2t3/�

= 1
3u3 −

(
mg2

2�

)1
3 tu2 +

(
mg2

2�

)2
3 t2u − 1

3

(
mg2

2�

)3
3 t3

= 1
3

[
u −

(
mg2

2�

)1
3 t

]3
so if we introduce35 w ≡ u −

(
mg2

2�

)1
3 t ≡ u − ωt then the final equation on the

preceding page can be written∫
c(p)Ψ(x, t; p) dp =

√
k e

− i
�
[mgxt]

· 1
2π

∫
exp

{
i
[
k(w + ωt)(x − a)) + 1

3w3
]}

dw

= e
− i

�
[mgxt − ℘ωt(x − a)]

·
√

k 1
2π

∫
exp

{
i
[
kw(x − a)) + 1

3w3
]}

dw

But ℘ω = (2m2g�)
1
3
(

mg2

2�

)1
3 = mg, so

= e
− i

�
mgat ·

√
k Ai

(
k(x − a)

)
= Ψ(x, t; a)

We have full confidence, therefore, in the accuracy of (90.1), of which

ca(p) = 1√
℘ e

i 1
3 (p/℘)3

e
− i

�
ap

(90.2)

provides a neater description.

Notice that g ↓ 0 entails ℘ ≡ (2m2g�)
1
3 ↓ 0, and that it follows from the

design of (90.2) that—consistently with our experience in §22—

lim
g↓0

ca(p) is ill-defined

On page 43 we had occasion to ask “. . .How do Airy functions arise
transformationally from [dropped] exponentials?” An elaborately detailed

35 Look back again to (48.4), where attention is drawn to the fact that
(

mg2

2�

)1
3 ≡ (τg)–1 = 1

gravitationally “natural time”
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answer is now in hand . . . and comes, in brief, to this: By intricate collaboration.
More technically: by t -dependent gauged unitary transformation.36

Conclusion. I have provided a fairly exhaustive account of aspects of the free
fall problem which one might expect would be standard to the textbooks, but
unaccountably aren’t. We have seen that the classical and quantum mechanical
theories display a nice formal parallelism—this not at all surprisingly, since the
free fall Hamiltonian H = 1

2mp2 + mgx depends not worse than quadratically
upon its arguments. We have been at pains to develop the relationship between
the free fall and free motion problems, i.e., to establish the sense in which
“weight”can be considered to be a“fictitious force, an artifact of non-inertiality.”
Our results serve in particular to illustrate aspects of the little-studied general
“quantum theory of fictitious forces,” but no attempt has been made here to
sketch the outlines of such a general theory.

Though our results are of some independent interest (and were anticipated,
so far as I am aware, only by Wadati25), my primary intent has been to provide
a context within which to consider the “quantum bouncer” and some related
systems. Those topics will be taken up in a series of companion essays.

36 In §7 of Part C I use certain operator identities to construct an alternative
derivation of our principal results that is relatively swift and painless, and that
places the “gauge” aspects of the matter in a new light.


